
1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 OCT 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Optimizing Terminal Conditions Using Geometric Guidance for
Low-Control Authority Munitions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFIT/ENEL Wright-Pattersn AFB, OH 45433-7221

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
CI09-0029

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

121

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

[This Page Intentionally Left Blank]

2

Optimizing Terminal Conditions Using Geometric

Guidance for Low-Control Authority Munitions

by

Paul C. Tisa

Submitted to the Department of Aeronautics and Astronautics on May 9, 2008 in
Partial Fulfillment of the Requirements for the Degree of Master of Science in

Aeronautical Engineering

Abstract

Small munition effectiveness is a function of miss distance from the target and ability to
achieve a steep flight path angle at the target. Many small guided munitions have limited
control authority to achieve these competing objectives due to system hardware trade-
offs. This thesis develops guidance algorithm modifications that demonstrate consistent
improvement in achieving these objectives over previously used methods with changes
only to the flight software and not the hardware or system concept of operations. Most
modifications attempt to intelligently incorporate post-launch information into the guid-
ance system, however there is an investigation into better using pre-launch information
through dynamic programming. Dynamic programming is an off-line approach to opti-
mize the guidance parameters applied in flight, based on measurable flight characteristics.

All investigated methods demonstrate varying abilities to improve performance for this
munition system. While dynamic programming is computationally intensive, it produces
an efficient look up table which is easily implemented in real time with minimal addi-
tional memory requirements. The thesis further shows that performance improvements
are gained by altering the rocket ignition time in flight, by tightening the tolerances on
some key sources of modeling error, and by developing a highly accurate time to impact
estimation algorithm. Regardless of the particular modification, better utilizing pre- and
post-launch information improves the munition’s performance and utility for the user.
While not tested, simultaneously implementing several of these improvements could fur-
ther increase performance.

Thesis Supervisor: Marc McConley
Title: Charles Stark Draper Laboratory

Thesis Advisor: Emilio Frazzoli
Title: Associate Professor, Department of Aeronautics and Astronautics

3

[This Page Intentionally Left Blank]

4

5

6

Contents

List of Figures 9

Lift of Tables 13

Nomenclature 15

1 Introduction 21

1.1 Problem Statement . 22

1.2 Objectives . 23

1.3 Overview . 24

2 Physical System Background 25

3 Simulation 29

3.1 Initializations . 32

3.2 Dynamics . 32

3.3 Save States . 34

3.4 Flight Utilities . 34

3.5 Transformation Direction Cosine Matrices (DCMs) 35

3.6 Aerodynamics, Guidance, Gravity, and Propulsion 37

3.6.1 Aerodynamics . 37

3.6.2 Guidance . 38

3.6.3 Propulsion . 41

4 Industry Standard Guidance Systems 45

4.1 Background . 45

4.1.1 Proportional Navigation . 45

4.1.2 Proportional Navigational with Gravity Bias 48

4.1.3 Offset Target Scale . 51

7

5 Establishing The Baseline Performance 53

5.1 Software Performance Envelope . 53

5.2 Hardware Performance Envelope . 56

6 Industry Standard Guidance Algorithm Characteristics and Issues 61

6.1 Correlation . 62

6.2 Time-to-Go Estimate . 67

6.3 Dynamic Programming and Varying Guidance Gain 70

6.3.1 Background . 70

6.3.2 Cost Function Determination . 74

6.3.3 Discretization Grid . 76

6.3.4 Implementing Dynamic Programming 83

7 New Guidance Attempts and Results 85

7.1 Dynamic Programming . 87

7.2 Predictive Rocket Ignition Time Analysis 95

7.3 Incorporating Post-Launch Information for Strongly Correlated Errors . . 99

7.4 Reducing tgoest Error . 100

8 Conclusions 107

9 Future Work 109

Appendix A: Abbreviations 111

Appendix B: Coordinate Frames 113

8

List of Figures

1.1 Tomahawk Land Attack Missile (TLAM) 21

2.1 Extended Range Guided Munition (ERGM) 25

2.2 Ballistic Trajectory Extended Range Munition (BTERM) 26

2.3 ERGM Mission Concept . 27

3.1 Comparison of Csim and Simulink Model 30

3.2 Basic Simulation Diagram . 31

3.3 δ
g

vs Time for Two Scenarios . 40

3.4 Thrust Comparison . 43

3.5 Center of Gravity Comparison . 43

4.1 ProNav Geometry . 46

4.2 ProNav with Gravity Bias Geometry . 48

4.3 ProNav Misusing Control Authority . 50

4.4 ProNav GB Using Control Authority . 50

4.5 OTS Geometry . 51

5.1 Downrange Miss vs Terminal Angle for Single Monte Carlo Run 54

5.2 Single Monte Carlo Run . 56

5.3 Baseline Performance and Optimal Envelope 57

5.4 Software and Hardware Performance Envelope 60

6.1 3D Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec 63

6.2 2D Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec 64

6.3 Stem Plot of Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec 65

6.4 Terminal Angle vs. Standard Deviations of Two Errors 66

6.5 Aiming Height vs tgo, tgoest for OTS gain 2.0 and Rocket Ign of 30.5 sec . 68

6.6 Aiming Height vs tgo, tgoest for OTS gain 1.8 and Rocket Ign of 31.25 sec 68

6.7 Aiming Height vs tgo, tgoest for OTS gain 1.4 and Rocket Ign of 34.5 sec . 69

9

6.8 Principle of Optimality . 71

6.9 Principle of Optimality . 72

6.10 Downrange Miss Cost . 75

6.11 Terminal Angle Cost . 75

6.12 Nominal Range Magnitude to Target vs Downrange Miss 79

6.13 Nominal Line of Sight Angle vs Downrange Miss 79

6.14 Nominal Velocity Magnitude vs Downrange Miss 80

6.15 Nominal Pitch Angle to Target vs Downrange Miss 80

6.16 Range Magnitude Grid over All Scenario Trajectories 81

6.17 Line of Sight Grid over All Scenario Trajectories 81

6.18 Velocity Magnitude Grid over All Scenario Trajectories 82

6.19 Pitch Angle Grid over All Scenario Trajectories 82

7.1 Final Performance Comparison . 87

7.2 Dynamic Programming Performance for First Run 88

7.3 Gain Frequency of First Optimal Control Policy 89

7.4 Dynamic Programming Performance for First Run with Modified Control

Policies . 90

7.5 Example of Doomed State Combination 91

7.6 OTS Gain versus Time for “Max”, “Min”, and “Mid” Control Policies . . 92

7.7 Gain Frequency of Optimal Control Policy with One Specified Downrange

Miss . 93

7.8 OTS Gain versus Time for “Max” Control Policies for 5 and 25 Monte

Carlo Runs . 93

7.9 Performance Difference Between Optimal Control Policy Generated from

5 and 25 Monte Carlo Scenarios . 94

7.10 Dynamic Programming Performance Compared to Constant Gain Perfor-

mance with Same Rocket Ignition Time of 30s 95

7.11 Dynamic Programming Performance Compared to Constant Gain Perfor-

mance with Same Rocket Ignition Time of 33s 96

7.12 Predictive Rocket Ignition Time Results 97

7.13 Performance with No Xcpbt
Error . 99

7.14 Performance with No Rocket Ignition Time Error 100

7.15 Corrected Aiming Height vs tgo, tgoest for OTS gain 2.0 and Rocket Ign of

30.5 sec . 101

10

7.16 Corrected Aiming Height vs tgo, tgoest for OTS gain 1.8 and Rocket Ign of

31.25 sec . 102

7.17 Corrected Aiming Height vs tgo, tgoest for OTS gain 1.4 and Rocket Ign of

34.5 sec . 102

7.18 Change in Performance with Negligible tgoest Error 103

7.19 Time Until Impact Error vs Time Until Impact Estimate Error 104

7.20 tgoest Correction Factor for Various Rocket Ignition Times 105

7.21 Probability of Kill vs. Min Terminal Angle for tgoest Correction Error . . 105

9.1 Earth-Centered, Earth-Fixed (E) Coordinate Frame 113

9.2 North-East-Down (N) and Aerodynamic (A) Coordinate Frames 115

11

[This Page Intentionally Left Blank]

12

List of Tables

2.1 System Parameters . 26

3.1 Input Data Script Initializations, Structure, and Units 32

3.2 Errors and 1σ Distribution . 33

3.3 Aerodynamic Tables, Definitions, and Units 37

5.1 Optimal Performance and Guidance Identity 57

5.2 “Ideal” Control Up Time Statistics and Distribution 59

6.1 Performance Parameter and Error Row/Column (i/j) 64

6.2 Performance Parameter Average Correlation to Simulation Errors 67

7.1 New Attempts’ Performance Improvement Given Arbitrary Constraints . 86

7.2 Predictive Rocket Ignition Time Correlation Coefficients 98

9.1 Abbreviation List . 111

9.2 Earth-Centered, Earth-Fixed (E) Coordinate Frame 113

9.3 North-East-Down (N) Coordinate Frame 114

9.4 Aerodynamic Coordinate Frame (A) . 114

13

[This Page Intentionally Left Blank]

14

Nomenclature

α Angle of attack

∆CPδ Change in center of pressure due to canards with no deflection

δsat Saturated Canard Deflection

∆t Time step

θ̇ Time rate of change of pitch angle

ε̇ Time rate of change in angle between velocity and line of sight vector

~̇V Acceleration vector

ṁ Time rate of change in mass

δ
g

Canard deflection per unit of acceleration

δ
g eff

Maximum canard deflection per unit of acceleration weight

δ
g max

Maximum canard deflection per unit of acceleration constant

v̂ Velocity unit vector

λ Geodetic longitude

µ Gravitational parameter constant, 3.986005× 1014 m3

s2

φ Roll body orientation angle

ψ Yaw body orientation angle

ρ Air density

θ Pitch body orientation angle

ε Angle between velocity and line of sight vector

ϕ Geodetic latitude

15

ϑ Geometric relationship in transformation matrix calculation

~Ω Vector sum of aerodynamic accelerations

~acmd Acceleration command vector

~g Gravitational acceleration vector

~V Velocity Vector

L̂OS Line of sight unit vector

ξ Specific energy

ζ Dynamic programming While loop limiter indication the steady state solution is

reached

a Ellipsoid equatorial radius, Semi-major axis

b Ellipsoid polar radius, Semi-minor axis

c Speed of sound

C
j
i Transformation matrix from coordinate frame i to j

Cd Coefficient of drag

Cmδ
Control moment slope due to canard deflection

CNα Control force slope due to angle of angle

CNδ
Control force slope due to canard deflection

cg Center of gravity from nose

cgf Final munition center of gravity

cgi Initial munition center of gravity

cgfueli Initial fuel center of gravity

cgfuel Fuel center of gravity

D Drag force magnitude

d Munition diameter

Dε Drag error

e Flattening factor geometric eccentricity

16

e
′

Ellipsoid radii geometric eccentricity

f Flattening factor, 0

gc OTS Gravity Constant, 9.8066 m
s2

gainhT
Inverse of the canard deflection per unit of acceleration transition height constant

h Altitude above ground

Ha Aiming point height

hmin δ
g

Lowest altitude allowable for maximum canard deflection per unit of acceleration

constant

hT δ
g

Canard deflection per unit of acceleration transition height constant

iDsw Drag switch logic bit

iLsw Lift switch logic bit

Iyf
Final moment of inertia about yA

Iyi
Initial moment of inertia about yA

JR
end Downrange miss cost

JT
end Terminal angle cost

K1 ProNav and ProNav GB Homing gain

K2 ProNav and ProNav GB Tunable gain

L Lift force magnitude

Lε Lift error

lfuel Nominal initial length of rocket motor fuel

LOSt Line of sight angle from target

M Mach number

m Total munition mass (rocket and munition)

mi Total initial munition mass without fuel

mfuel Total mass of rocket fuel

N Total number of points in dynamic programming

17

n State combination n in the state matrix of size N

N(ϕ) Radius of curvature in prime vertical

Ni Number of independent variable discretizations

Nκ
x Number of quantized states of dimension κ

OTSgain OTS tunable gain

p Geometric relationship in transformation matrix calculation

q Dynamic pressure

R Range magnitude from current position to target

R2
tarmax

Terminal boundary constant

Rtar Range to target

RE Earth radius constant, 6.378137× 106 m

S Aerodynamic surface area of munition

T Rocket Thrust

t Current Time

tb Rocket burn duration

Tε Rocket thrust factor error

tbε Rocket burn duration error

tcmdε Commanded rocket ignition time error

tcmd Commanded rocket ignition time

tgoε Time until impact error

tgoact Actual time until impact

tgoest Estimate time until impact

tgo Actual time until impact

Tmax Maximum rocket thrust

Tmin Minimum rocket thrust

18

V Velocity magnitude

V (x) Dynamic programming value matrix

Xcpbt
Center of pressure from nose

19

[This Page Intentionally Left Blank]

20

Chapter 1

Introduction

In the past several decades, the ability to put long-range projectiles precisely where

desired has greatly improved, augmented by many technologies such as the Global Po-

sitioning System (GPS). Many missile programs, such as the Tomahawk Land Attack

Missile (TLAM) seen in Figure 1.1, rely on high lift to drag ratios, large control surfaces,

and multiple sensors to basically fly into the target [15]. Over the years, these programs

have developed advanced systems simultaneously able to achieve unprecedented accuracy,

time-of-flight (TOF) control, and high terminal angles. However, these systems are ex-

tremely complicated and expensive, many in excess of half a million dollars unit cost [15].

Additionally, the combination of their relatively slow glide speed and long TOFs makes

these weapon systems too unresponsive for many missions in today’s battlefield [18].

Figure 1.1: Tomahawk Land Attack Missile (TLAM) [28]

21

Serving a quick response need, traditional dumb munitions serve as a contrast to the

long range, smart projectiles [40]. They are more responsive because their short range

requires the user to be closer to the target and more cost-effective because their simpler,

ballistic trajectory requires no guidance, navigation, and control (GN&C) system [41].

Relative to the TLAM, one of the greatest disadvantages for dumb munitions is there

poor accuracy. Improving that accuracy would simultaneously increase the munition’s

mission envelope and decrease the total number needed to complete a given task [18] [17].

Attempts to increase accuracy with GN&C must balance between overly scanty systems

that fail to improve accuracy enough and excessive systems that detract from the muni-

tion’s original advantages.

1.1 Problem Statement

Traditionally, designers attempted to implement scaled down versions of GN&C sys-

tems borrowed from higher control authority missiles. Originally optimized around

starkly different systems, these guidance architectures perform well but fail to use the

flight characteristics of low-control authority munitions to maximize performance [54].

As a result, they leave room for improvement. For example, Proportional Navigation

(ProNav) performs relatively well for most configurations but always fails to maximize a

munition’s performance when faced with both stringent accuracy and high terminal angle

conditions [52]. This guidance system fails to account for gravity, a relatively dominant

acceleration when compared to these munitions’ control. As a result, ProNav wastes

control authority fighting this predictable factor, unnecessarily sacrificing performance.

While ProNav can be excellently tuned for specific cases, it lacks the flexibility to func-

tion well over a broad mission spectrum [42].

Over the years, engineers and academics have designed other guidance systems that

attempt to surpass ProNav [43] [34]. Many studies attempt a two-dimensional engage-

ment, simplifying the equations of motion enough so that the coupled nonlinear ordinary

differential equations become solvable [20] [5] [53] [50]. For example, Adler derived a

proportional navigation law as a function of geometric curvatures [2], Lin applied linear

quadratic Gaussian theory to determine normal acceleration commands for a bank-to-

turn missile [35], and Kumar et al. applied optimal control techniques to calculate a

three phase feedback guidance law [29]. More generally, recent guidance laws incorporate

optimal control theory [12] [44] [36], differential game theory [24] [37] [33], geometric ap-

22

proaches [11] [49], variable structure control [38], nonlinear guidance laws [32] [47] [51],

and/or neural networks [4] [13]. Many times the methods do not completely replace

ProNav, but merely modify it, such as Gurfil with his neoclassical guidance [22] [21] and

Jalali-Naini with his modified LOS guidance [26].

Two such adaptations that exemplify the effectiveness of simple modifications are

ProNav with a gravity bias constant (ProNav GB) and Offset Target Scale (OTS). ProNav

GB simply adds a constant to the guidance system’s acceleration calculation, in effect

hiding gravity from the munition. OTS utilizes a slightly more complicated method by

having a falling aim point. While not perfect, these simple improvements have caused

ProNav GB and OTS to become quite popular. However, they both suffer from the same

major flaw: they fail to realize a lot of the benefit in post-launch information.

Also tested is dynamic programming, an optimal control theory not new to this prob-

lem but novel in the details of its attempted implementation [16]. In contrast to improving

the utilization of post-launch information, dynamic programming attempts to optimize

pre-launch information. The demarcation is made because dynamic programming’s out-

put, an optimal control policy, is entirely a function of pre-launch information and cannot

be changed after launch.

While it optimally uses the pre-launch information within given constraints, the effec-

tiveness of dynamic programming diminishes as the perturbations between each launch

grows. This suggests that a new guidance system, able to beneficially use both pre- and

post-launch modifications, has the potential to drastically improve performance.

1.2 Objectives

The objective of this thesis is to demonstrate that better optimizing hard coded de-

cisions early in the trajectory and programming the flexibility to intelligently use post-

launch information can produce significant performance improvement in the industry

standard guidance systems. This information can contain but is not limited to rocket

characteristics and state updates from GPS. If properly done, this new guidance system

should simultaneously maintain simplicity and low-cost, while improving the munition’s

ability to meet terminal constraints throughout its entire mission envelope.

23

For the user, this means the objective is to improve the capabilities of the munition in

many directions of measurable performance through minor modifications to the software

and system architecture. This would translate to creating a munition with the ability

to simultaneously hit the desired target more accurately and at a higher terminal angle.

The higher accuracy should require fewer shots to destroy or incapacitate a target, and

the higher terminal angle would broaden the target spectrum of the munition, allowing

more hardened targets. Ultimately, the objective is to give the user a better performing,

more useful munition.

Within this thesis, solutions are designed for a low-control authority, short TOF mu-

nition. However, the simplicity of such a system allows for similar adaptations to be uti-

lized by other projectile programs. Although the object of many works in this field, the

target for this thesis does not move and is always in a known, stationary position [31] [10].

1.3 Overview

The outline of this thesis is as follows: Chapter 2 provides some background informa-

tion on the theoretical munition system this thesis is based around. Chapter 3 details

the software simulation all the results were obtained from. Some more information on

the industry standard guidance systems mentioned previously is presented in Chapter 4

and their performance in the simulation is contained in Chapter 5. In Chapter 6, the new

guidance system attempts are revealed and explained. The stage is then set to compare

the old to the new in Chapter 7. Chapter 8 and 9 close the thesis with final conclusions

and future work, respectively.

24

Chapter 2

Physical System Background

Defendable assumptions and realistic parameters are critical for the hardware. Estab-

lishing any guidance system, no matter how successful, would be useless if it only worked

on fictional munitions. As such, the projectile system models historically established mu-

nition characteristics and constraints. Figure 2.1 shows a publicly released picture of and

some statistics on one such program, the Extended Range Guided Munition (ERGM)

built by Raytheon. Another publicly known project with a similar mission, shown in

Figure 2.2, is the Ballistic Trajectory Extended Range Munition (BTERM) developed

by Alliant Techsystems (ATK) and The Charles Stark Draper Laboratory [17].

Figure 2.1: Extended Range Guided Munition (ERGM) [1]

25

Figure 2.2: Ballistic Trajectory Extended Range Munition (BTERM) [3]

According to what is publicly reported, both of these systems have similar mission

plans and munitions with alike characteristics. Figure 2.3 shows how Raytheon repre-

sents their system’s life cycle. The simulated system’s life cycle is qualitatively the same.

Table 2.1 summarizes the quantitative parameters used. Because of available firing plat-

forms, the munition must be less than five feet in length and 110 pounds in weight [14].

It must fulfill a support role balancing the responsiveness of traditional artillery with the

accuracy of new long-range missiles. As such, this system needs to have an operational

range of at least fifteen to forty-one nautical miles from launch point and still meet the

accuracy and terminal angle conditions [14]. Accuracy must be no more than twenty

meters circular error probable (CEP) and the higher the terminal angle, the better [17].

Terminal angle is the pitch body orientation angle at the point of impact. It must also be

able to reach any target within that range window in less than five minutes from time of

fire [17]. The launch platform can supply the munition with some preflight information,

such as target location and local meteorological data, but the processing time will not

exceed ten seconds for assumed rate of fire considerations.

Table 2.1: System Parameters

Length < 5 ft Accuracy < 20 m CEP
Weight < 110 lb TOF < 5 min
Range ≥ 15 & ≤ 41 nm Pre-launch Time < 10 sec

There are also less quantitative system requirements. To simultaneously meet the

26

Figure 2.3: ERGM Mission Concept [1]

desired range window and size constraints, this munition must be equipped with a rocket

engine and have a guidance system flexible enough to maintain performance in spite of

the unknown variabilities of the engine, such as total thrust, ignition start time, and total

burn time. While not necessary intuitive, firing the rocket earlier increases downrange,

while the opposite is true for a later rocket ignition. The GN&C actuators are typically

angle of attack variable canards fixed to the munition body. Using the canards to pull up

increases downrange but decreases terminal angle, while pulling down decreases down-

range but increases terminal angle. For cost considerations, the only available onboard

sensors are a GPS receiver and an Inertial Navigation System (INS). As a whole, the

system must also be robust enough to function in all normal weather and atmospheric

conditions at any time of day. The characteristics of the rocket, such as burn duration,

thrust profile, and mass, are also roughly based on the available information of similar

systems.

27

[This Page Intentionally Left Blank]

28

Chapter 3

Simulation

The simulation, built in MATLAB and Simulink, is critical to all this work. The sim-

ulation’s design focuses on replaceable parts and the author’s finite knowledge. The first

allows the simulation to conduct very different runs without any modifications between

runs. The input script can specify different guidance systems, rocket characteristics, and

many others in a long series. The simulation takes one setup at a time without any

necessary modifications to the code or model. The second focus is not meant as a flam-

boyant display of humility but just as a matter of fact. Incorporating the vast array of

factors separating this thesis’ simulation and a high fidelity one would have reduced the

available time to work on the subject of importance, leaving little time to investigate

the real subject. As with many projects, there is a balance between accuracy and com-

plexity. The simulation needs to be accurate enough so that the trends in data, not the

precise values, can translate to the real world. Despite any issues with the particular im-

plementation discussed in this chapter, this simulation’s final behavior was compared to

the behavior of a vastly more elaborate six degree of freedom (DOF) industry produced

model. Their behaviors were satisfactorily similar, with explainable differences. Figure

3.1 compares a few attributes between a commercial-level six DOF simulation, and the

Simulink model. The figure specifically shows Mach number, speed of sound, velocity

magnitude, and mass versus time.

The Simulink simulation is a three DOF longitudinal model with many interchangeable

parts, most importantly the guidance system. The three DOFs are altitude, downrange,

and pitch. Altitude is the vertical distance above or below the chosen origin, downrange

is the horizontal distance until or beyond the chosen origin, and pitch is the angle be-

tween the downrange and altitude component of velocity. Altitude and downrange are

positive when the object is above and beyond its origin, respectively. Pitch has the sign

29

Figure 3.1: Comparison of Csim and Simulink Model

convention such that a munition fired straight up would have a pitch of +90◦ on the way

up and a pitch of −90◦ after reaching its maximum altitude, apogee, and beginning the

fall back to the ground. This example assumes the munition instantly turns 180◦ after

gravity starts to bring it back to the surface. Pitch at the time of impact is referred to

as the terminal angle. While desirable terminal angles are negative, figures in this thesis

show them as positive so that the desired position in the figures progresses from left to

right. Because of this “increasing” terminal angle, a desirable improvement, refers to a

negative number increasing in magnitude and moving further from zero.

For purposes of clarity, defining the difference between the terms “actual” and “es-

timated” is important. “Actual” pertains to any information that could be regarded

as the truth, in the sense that it is the simulation’s closet representation of the truth.

“Estimated” describes the onboard flight software’s best guess of that particular char-

acteristic’s value at any given time. While presently, it is easier and possible to use one

set of values, this is meant to mimic the realistic difference between the real world value

of some property and the system’s approximation. As such, the simulation is simulta-

neously running two seemingly identical subsystems in several locations, where the only

difference is that one is using “actual” values while the other utilizes “estimated”.

30

While others may be discussed within their pertinent subsystems, the simulation at

least makes the following assumptions:

1. The munition can be represented as a point mass

2. The angle of attack and its effect on munition aerodynamics can be estimated

3. The munition can be approximated as a rigid body

4. The munition is symmetric about the longitudinal axis

5. The rocket burns fuel at a linear rate

6. The thrust profile is linear

7. The information supplied by the onboard navigation system has no errors

8. The control system is always able to generate the exact amount of canard deflection

requested by the guidance system

The entire simulation is designed as a series of routines that are grouped into the six

blocks seen in Figure 3.2.

Figure 3.2: Basic Simulation Diagram

31

3.1 Initializations

Initializations is a simple masked block that allows the user to externally specify

those variables held constant throughout an entire test campaign, such as launch date,

munition mass, fuel mass, rocket burn duration, maximum and minimum rocket thrust,

and munition diameter. Internally, it correctly formats the input data script, where the

user specifies the frequently changed variables shown in Table 3.1.

Table 3.1: Input Data Script Initializations, Structure, and Units

Rocket Start Time scalar s
Launch Gun Elevation scalar deg
Launch Gun Velocity scalar m

s
Guidance System Choice scalar unitless

Canard Limit scalar deg
Guidance System Gain scalar unitless

Gravity Bias Value scalar m
s2

Gravity Estimate scalar m
s2

Launch Position 1 by 3 vector [ϕλh] [deg deg m]
Target Position 1 by 3 vector [ϕλh] [deg deg m]

Starting Position 1 by 4 vector [|~R| LOS |~V | pitch] [m deg m
s deg]

Drag Switch scalar logical [0 or 1] unitless
Lift Switch scalar logical [0 or 1] unitless

Rocket Switch scalar logical [0 or 1] unitless
Gravity Switch scalar logical [0 or 1] unitless

Hardwire Actuators Switch scalar logical [0 or 1] unitless
Control Table Switch scalar logical [0 or 1] unitless

Non-Launch Point Start Switch scalar logical [0 or 1] unitless
Error Switches3.2 1 by 34 vector logical unitless

The Monte Carlo test runs have thirty-four errors incorporated in them. A single

Monte Carlo run is actually 500 simulation calls. Each simulation call has randomly de-

termined, zero-mean, normally distributed sigma values for its thirty-four errors. Table

3.2 shows the default 1σ values for the errors.

3.2 Dynamics

Equations relating both forces and torques to accelerations and time derivatives of

angular momentum, respectfully, are necessary for a true six DOF simulation. In this

simulation, the munition is modeled as a point mass, therefore eliminating any torque

32

Table 3.2: Errors and 1σ Distribution

Rocket Burn Time 2
3 s Mass 0.15 lb

Rocket Ignition Time 1
3 sec Center of Gravity 0.05 in

Rocket Thrust Factor 1.5% Standard Pressure 1%
Gun Velocity 1

3% Standard Temperature 2 ◦K
Gun Elevation 0.1◦ Wind X-Axis 16 ft/s

6 Aerodynamic Coefficients 1% Drag 1%
16 Aerodynamic Mach Related 1% Lift 5

3%

and half of the equations. Within the simulation’s Dynamics block, forces are converted

to accelerations. The linear equations of motion could be written as:

V̇I = Ωx +
Tx

m
− |~g| sin(θ)

V̇K = Ωz + |~g| cos(θ)

θ̇ = arctan

(
−wN

uN

) (3.1)

Above, V̇ is the acceleration, ~Ω is the summation of all the actual aerodynamic accel-

erations modeled, T is the force from the munition’s rocket, m is the current mass, and ~g

is the current gravitational acceleration vector, and θ is the current pitch. The subscript

for each variable represents the component and coordinate frame the data enters Dynam-

ics. I, J , and K are the three components for the Earth-Centered, Earth-Fixed frame, x,

y, and z are for the Aerodynamic frame, and N , E, and D are for the North-East-Down

frame. See Appendix B for details. All information is converted to Earth-Centered,

Earth-Fixed prior to summation. Additionally, the rocket thrust is always entirely along

the xA-axis, so the subscript is dropped for the remainder of this thesis. These equa-

tions are numerically integrated to determine the current state. Obviously, any inertial

coordinate frame can be used as long as consistency is practiced. While the simulation

integrates the equation after each component has been converted to Earth-Centered,

Earth-Fixed (E) and summed, each force or acceleration is usually more easily visualized

in another coordinate frame. The third equation approximates pitch as a function of

velocity. It is an approximation because the previous decision to model the system as a

point mass makes the concept of any body angle technically impossible.

33

3.3 Save States

Everything done within Save States is for post-simulation analysis.

3.4 Flight Utilities

Overall, Flight Utilities has three major tasks. First, it takes in state information to

determine certain aerodynamic properties or characteristics, such as dynamic pressure

and Mach number. Second, it performs that first task in two separate subsystems, one

used by the actual model and the other by the estimated model. Lastly, Flight Utilities

stops the simulation when the munition hits the ground.

Initially, speed of sound and air density are calculated as functions of the current

height. This is where actual and estimated first deviate. The estimated system assumes

standard day air temperature and pressure, while the actual obtains the randomly de-

viated “true” values. Then, speed of sound and air density, along with the height and

velocity, determine the dynamic pressure and Mach number. The calculations are based

on the 1976 U .S . Standard Atmosphere. Supplying optional temperature and pressure

at sea level biases the temperature versus altitude matrix. The pressure and density

matrices are then recalculated with the supplied sea level pressure and the ideal gas law.

These aerodynamic properties determine the dynamic pressure (q) and Mach number

(M).

q =
1

2
ρ|~V |2 (3.2)

M =
|~V |
c

(3.3)

Above, ρ is the current air density in kg
m3 , |~V | is the magnitude of the current velocity

vector in m
s
, and c is the current speed of sound in m

s
. Using the listed units, dynamic

pressure is calculated in Newtons and Mach number is unitless.

The last step in Flight Utilities is to calculate the aerodynamic surface area from the

user specified munition diameter. The simple geometric function is [48]:

34

S = π
d2

4
(3.4)

The default diameter, 5 in or around 0.127 m, is a function of the system parameters

and based on real world systems.

3.5 Transformation Direction Cosine Matrices (DCMs)

Within this block, pitch and position determine the current transformation matrices

between the coordinate frames. Pitch determines C
NED

A , the direction cosine matrix

(DCM) from the Aerodynamic to the North-East-Down frame, through the following

equations:

C
NED

A =

0B@ cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)

1CA (3.5)

In Equation 3.5, φ, θ, and ψ are the body orientation angles roll, pitch, and yaw,

respectively.

In another part of the block, position information determines C
N
E , by first calculating

the geodetic latitude (ϕ), longitude (λ), and altitude (h) as:

ϕ = arctan

(
Z + e

′2b sin(ϑ)3

p− e2a cos(ϑ3)

)
(3.6)

λ = arctan

(
Y

X

)
(3.7)

h =
p

cos(ϕ)
−N(ϕ) (3.8)

Above X, Y , and Z are the current position components in the Earth-Centered,

Earth-Fixed frame, e and e
′
are both geometric eccentricities, a is the ellipsoid equato-

rial radius, b is the ellipsoid polar radius, and N(ϕ) is the radius of curvature in prime

vertical. These are calculated as:

35

e2 = 2f − f 2 (3.9)

e
′2 =

a2 − b2

b2
(3.10)

b =
√
a2(1− e2) (3.11)

N(ϕ) =
a√

1− e2 sin(ϕ)2
(3.12)

p =
√
X2 + Y 2 (3.13)

ϑ = arctan

(
aZ

bp

)
(3.14)

f is Earth’s flattening factor and is a function of the equatorial and polar radii [9].

f =
a− b

b
(3.15)

As a final step, the algorithm pulls factors of 2π from the longitude until it is between

zero and 2π. The subroutine also corrects for the numerical instability in the altitude cal-

culation that occurs near the poles. The error is around 2 mm with this correction, which

approximately matches the numerical precision of the entire function. The function uses

the WGS84 model’s semi-major axis for both its semi-major and semi-minor variables,

resulting in a flattening factor of zero. Accordingly, both geometric eccentricities are

zero. As a result, the algorithm could be simplified significantly, but was implemented as

described to allow an easy transition to a more accurate model. Currently, the spherical

earth assumption is of little consequence as all testing originates at the equator.

Then another routine uses that information to determine the transformation matrix as:

C
NED

E =

 − cos(λ) sin(ϕ) − sin(λ) − cos(λ) cos(ϕ)

− sin(λ) sin(ϕ) cos(λ) − sin(λ) cos(ϕ)

cos(ϕ) 0 − sin(ϕ)

 (3.16)

Additionally, enough information exists to determine the DCM to convert to and from

the Earth-Centered-Inertial Frame. However since the simulation only shoots North along

the Prime Meridian for the results displayed, this frame is always the same as the Earth-

Centered, Earth-Fixed frame.

36

3.6 Aerodynamics, Guidance, Gravity, and Propulsion

As the name suggests, this block contains four sub-blocks. Gravity is simple enough to

be explained here, while the other three are large enough to necessitate separate sections.

The sections for those larger blocks are below.

Gravity simply takes in the current altitude, which is in the Launch Centered Earth

Fixed (LCEF) frame, converts it to Earth-Centered, Earth-Fixed, and uses the following

equation to determine gravitational acceleration:

|~g| = µ

(h+RE)2
(3.17)

In Equation 3.17, µ is the gravitational parameter constant, h is the current altitude,

and RE is Earth’s radius.

3.6.1 Aerodynamics

The end goal in Aerodynamics is to determine actual lift potential, a force, per degree

of canard deflection. It does this by using information determined in Flight Utilities. The

system employs tabled, first-order aerodynamic coefficients to calculate the drag and lift

potential. These tables were derived from experimentally determined tables for a real

system with similar physical characteristics and system requirements. Table 3.3 shows

all the aerodynamic tables used in the simulation.

Table 3.3: Aerodynamic Tables, Definitions, and Units

Cd Coefficient of drag Unitless
CNα Control force slope due to angle of angle Unitless
CNδ

Control force slope due to canard deflection Unitless
Cmδ

Control moment slope due to canard deflection Unitless
Xcpbt

Center of pressure from nose Meters
∆CPδ Change in center of pressure due to canards with no deflection Meters

The aerodynamic tables are a function of Mach number. Guidance looks up the nec-

essary aerodynamic value with assumed Mach number. Aerodynamics uses actual Mach

number and deviates the table value by a random deviation specified in the seed. The

seed is a large table specifying all the deviations for all of the variables with an error

37

term. Both sub-blocks linearly interpolate when necessary. Within Aerodynamics, there

is error deviation both as a function of the coefficient and Mach number. The coefficient

error is specific for each coefficient in each scenario, while the Mach number error is

specific to a particular Mach number but is applied equally to every coefficient looked up

at that Mach number in each scenario. While the error values are randomly determined

with a normal distribution mean equal to zero, the same table is repeatedly used to allow

for a direct comparison of results. At any point, a new seed can be generated if there are

concerns that a particular guidance system is overly adjusted to the old seed.

Aerodynamics receives the current actual dynamic pressure, the aerodynamic surface,

the current actual Mach number, and the munition diameter from previous routines.

After looking up the appropriate values in the aerodynamic tables, the block calculates

the drag and lift per degree of canard deflection as:

D = −CdqS · iDsw(1 +Dε) (3.18)

L

δ
=
−qS

2

(
− dCmδ

Xcpbt
− cg + ∆CPδ

2

+ CNδ

)
· iLsw(1 + Lε) (3.19)

The only unexplained variables in these equations are Dε the drag error, Lε the lift

error, and iDsw and iLsw switch variables set either to 0 or 1. With these switches, the

user can easily run a simulation without either or both of these forces for debugging or

testing purposes.

3.6.2 Guidance

Guidance has a job similar to Aerodynamics, but, because the process is significantly

more complicated, Guidance is divided into three subroutines. The first two, Homing

and Guidance Command, are guidance system specific, while the third, Lift Command, is

not. Because of this, details for Homing and Guidance Command are saved for each guid-

ance system’s section later in the thesis. However, there are some helpful generalizations

worth mentioning because their overall function is guidance system independent. Hom-

ing Command uses the known state information to calculate an acceleration command in

the inertial frame to reacquire the “optimal” path. Obviously, “optimal” is dependent on

the guidance algorithm implemented. Guidance Command transforms that acceleration

38

vector from the inertial to the aerodynamic coordinate frame. Most also bias or scale the

transformed acceleration command by some factor, once again depending on the utilized

algorithm.

Lift Command is the same for all guidance systems used in this work. It takes the

acceleration command in the aerodynamic frame and turns it into an amount of canard

deflection. Initially, Lift Command looks up the tabulated values for the same variables

as Aerodynamics with the exception that these tables have not been altered by either the

variable specific error or the Mach number correlated error. Next, the routine calculates

drag almost exactly as before:

D = −CdqS · iDsw (3.20)

Then, Lift Command approximates a canard deflection per number of “g’s” (δ
g
). This

is a conversion factor from the desired acceleration command to the canard deflection

required to obtain it.

if Unstable
(
Xcpbt

− cg + ∆CPδ

2 < 0
)

then

δ
g =

2m
“

Xcpbt
−cg+

∆CPδ
2

”
qSCmδ

d ;

else

δ
g =

2m
“

Xcpbt
−cg+

∆CPδ
2

”
qS

h
CNδ

“
Xcpbt

−cg+
∆CPδ

2

”
+Cmδ

d
i ;

if Dynamic pressure is low saturate
(

δ
g > δ

g max

)
then

if Too near ground do not saturate
(

h < hmin δ
g

)
then

if Ensure smooth transition between saturated and unsaturated
(

h < hmin δ
g

+ hT δ
g

)
then

δ
g eff

=
(

h− hmin δ
g

)
gainT ;

else
δ
g eff

= 1;

end

δ
g =

(
1− δ

g eff

)
δ
g +

δ
g eff

δ
g

2
max

δ
g

;

end
end

end
Algorithm 1: Calculating δ

g

39

Besides δ
g eff

, all the unexplained variables in Algorithm 1 are constants set by the

user. δ
g max

sets a limit on the canard deflection per unit of acceleration, hmin δ
g

ensures

more conservative canard deflection commands as the munition approaches the ground,

hT δ
g

is the transition height, and gainhT
is equal to the inverse of the transition height.

These constants are designed to allow the user to shape the δ
g

curve. As it relies on

many variables, the δ
g

for any given simulation run differs quantitatively to another run.

However, the qualitative trend is strongly correlated to the initial downrange to target.

Figure 3.3 depicts the usual appearance of δ
g

for short and long range scenarios. The

figure shows some time where δ
g

is equal to zero for both scenarios. This is a result of the

simulation. δ
g

is only calculated after the guidance system turns on, which is initiated by

the pitch passing through local level or zero degrees. Internally, the simulation uses rad
m/s2

for the units of δ
g
. The figures are displayed in a more intuitive unit, deg/g, where “g” is

the average acceleration experienced on Earth at sea level.

Figure 3.3: δ
g vs Time for Two Scenarios

Then it is simply multiplied by the acceleration command passed in from Guidance

Command to calculate the necessary canard deflection. Before leaving the block, there is

a check to ensure the canard deflection is within the physical constraints of the system.

40

The currently assumed deflection limit is ±12◦. As a final step, the lift and angle of

attack (α) are estimated and saved for debugging.

L = −qS
2

(
− dCmδ

Xcpbt
− cg + ∆CPδ

2

+ CNδ

)
δsat · iLsw (3.21)

α = − 1

2CNα

(
dCmδ

Xcpbt
− cg + ∆CPδ

2

)
δsat (3.22)

This deflection command then exits Guidance to be multiplied with Aerodynamics’

computed lift per degree of canard deflection to determine the actual force generated

by the canards. As this lift per degree of canard deflection is determined with errors,

there is a difference between what acceleration the guidance system wanted and what

acceleration the munition actually receives. Assuming the guidance system is stable, this

problem is corrected by the system’s closed loop feedback.

3.6.3 Propulsion

Propulsion basically decides which of three possible events is currently taking place.

Either the rocket has yet to start, the rocket is firing, or the rocket has expired. If it has

not started, then the rocket’s thrust is zero, the munition’s change in mass is zero, and

its center of gravity is located at the initial location, about 0.83 meters from the nose.

If it has expired, then the rocket’s thrust is zero, the munition’s change in mass is equal

to the total fuel mass, and the center of gravity is located at the final location, around

0.78 meters from the nose. Propulsion only performs calculations when the simulation

is between the former and the latter stage. As the rocket fires, thrust (T), mass change

(ṁ), and center of gravity (cg) are represented by the following functions:

T =

{
Tmax − Tmin

tb + tbε

[t− (tcmd + tcmdε)] + Tmin

}
(1 + Tε) (3.23)

ṁ =
mfuel

tb + tbε

[t− (tcmd + tcmdε)] (3.24)

cg =
micgf + (m−mi)cgfuel

m
(3.25)

In the thrust equation, Tmax is the rocket’s maximum thrust, Tmin the rocket’s min-

41

imum thrust, tb the burn duration of the rocket, tbε the error in that burn duration, t

the current time, tcmd the commanded ignition time of the rocket, tcmdε the error in that

commanded start time, and Tε the thrust factor error. In the mass change calculation,

mfuel is the total mass of the fuel. In the center of gravity equation, mi is the munition’s

initial mass without fuel, cgf is the final center of gravity, m is the current total mass,

and cgfuel, the fuel center of gravity, is determined by

cgfuel = cgfueli − lfuel
mi +mfuel −m

2mfuel

(3.26)

cgfueli =
(mi +mfuel)cgi −micgf

mfuel

(3.27)

lfuel =

√
12
[
Iyi
− Iyf

−mi(cgi − cgf)2 −mfuel(cgi − xb)2
]

mfuel

(3.28)

Above, cgi is the initial center of gravity, and Iyi
and Iyf

are the munition’s initial and

final moment of inertia about the yA axis.

The first two calculations are linear, first-order approximations of the unknown real

functions. Figure 3.4 shows how this approximation compares to the experimental data

it is based on. “Simulink” is the three-DOF model, while “Csim” is the higher DOF,

commercial grade simulation.

While thrust at any one time may not perfectly match or even decently resemble the

data, the total thrust profile area was adjusted to fit the data with a difference of less

than five milliNewton-seconds or about a 1.25× 10−5% error. The mass change function

is designed in the same way.

The center of gravity equation is mathematically derived to represent the empirically

derived data of the center of gravity as the rocket burned. This data was collected for

a real world munition with similar mission and physical characteristics to the one sim-

ulated. The results of comparing the simulation’s representation and that of the higher

accuracy model are shown in Figure 3.5. The figure depicts the simulation’s assumed

center of gravity. The actual center of gravity is determined by adding in an error term.

42

Figure 3.4: Thrust Comparison

Figure 3.5: Center of Gravity Comparison

43

[This Page Intentionally Left Blank]

44

Chapter 4

Industry Standard Guidance

Systems

While countless other academics and engineers have tested ProNav, ProNav GB, and

OTS, the performance of these guidance systems on the simulation used in this thesis is

critical for establishing a baseline. It is necessary to directly compare the older guidance

systems with any methods attempted in this work.

4.1 Background

4.1.1 Proportional Navigation

ProNav is the simplest guidance algorithm presented in this work. The primary value

of discussing ProNav is that the other guidance systems build directly from it. Simply

stated, ProNav tries to align the munition’s velocity vector with the line-of-sight (LOS)

vector. Figure 4.1 illustrates this geometry for a two dimensional example, where ~v is

the velocity vector,
−−→
LOS is the LOS vector, and ε is the angle between the two vectors.

Represented in this notation, it could also be said that ProNav looks for a command

force to keep ε̇, the time rate of change of ε, negative [39]. For this two dimensional

example and the simulation, ε̇ can be approximated as the following, where L is the lift

produced by canard deflection, m is the current mass, and |~V | is the velocity magnitude:

∆ε = − L

m|~V |
(4.1)

Assuming ProNav can maintain this and has enough time, the approximation ensures

45

the two vectors converge. As a reminder, the navigation information is treated as perfect,

resulting in an errorless LOS vector [23].

Figure 4.1: ProNav Geometry

In actual implementation, ProNav requires the current position and velocity, target

location, and transformation DCM from Earth-Centered, Earth-Fixed to North-East-

Down. Within homing cmd.m, that information is used to calculate ~ε and the accelera-

tion command, ~acmd
E , as:

~ε = L̂OSE −
(
L̂OSE · v̂E

)
v̂E (4.2)

~acmd
E = K1K2~ε (4.3)

In the previous equations,ˆrepresents a unit vector, · signifies a dot product, K1 is the

homing gain, and K2 is a user tunable gain. The homing gain is inversely proportional

to the range to target. However, to prevent this gain from exploding as the munition

enters the terminal phase of flight, ProNav uses a second, decreasing function as follows:

46

K1 = min

{
~v2

Rtar

~v2Rtar

R2
tarmax

}
(4.4)

Above, Rtar is the current range to the target in meters and R2
tarmax

is a user selected

constant that sets the boundary between the normal and terminal flight phase.

The simulation passes the calculated acceleration command and the DCM from Earth

to aerodynamic frame to guidance cmd.m. For ProNav, the acceleration command sim-

ply undergoes a coordinate transformation from the Earth-Centered, Earth-Fixed to the

Aerodynamic frame:

~acmd
A = C

A
E~acmd

E (4.5)

The limitations of ProNav are well known. For this problem, the most significant issue

is that gravity is neglected during the derivation. Unfortunately, for this munition, grav-

ity is a significant force in comparison to the force the canards can generate. In fact for

this system, except for in the densest control authority states, gravity cannot be directly

countered. The would-be ballistic point of impact, decided mostly by gravity, can only

be moved within a relatively small window even if all control authority is utilized in a

single direction.

As a result, one of the most identifiable behaviors of ProNav in a system like this is

spending most of its control trying to fight gravity. Beginning at apogee, when the guid-

ance system turns on, ProNav would immediately nose down, trying to align its velocity

vector with the target’s LOS vector. Without knowledge of the future, this makes sense

to ProNav as the munition’s velocity vector is usually around horizontal to the ground

and the target is far below, as depicted in Figure 4.1. The guidance system fails to

realize gravity would eventually do this to the munition without any canard deflection.

For an instant, the two vectors are aligned and ProNav commands no deflection from

the canards. However, the guidance system soon realizes that the velocity vector has not

stopped moving and continues its fall through the LOS vector towards the ground even

though the canards were neutralized. For the remainder of the flight, ProNav slowly

increases the canard deflection fruitlessly trying to pull the velocity vector back into

alignment with LOS vector. As a result, even if the munition was close enough ballisti-

cally to hit the target despite this misuse of control authority, the terminal angle is still

47

needlessly sacrificed. Running a long range simulation with the ProNav guidance system

easily demonstrates this behavior, illustrated in Figure 4.3.

Accordingly, ProNav can only practically be used as a terminal guidance system,

where its assumptions do not have enough time to so detrimentally affect performance.

The other two guidance systems try to improve on ProNav’s model, keeping its simplicity

as much as possible and removing its weaknesses.

4.1.2 Proportional Navigational with Gravity Bias

ProNav GB attempts to solve ProNav’s greatest weakness for this type of system, an

inability to account for gravity. While it calculates everything in homing cmd.m exactly

the same as ProNav, ProNav GB adds a constant approximation of the gravitational

acceleration in guidance cmd.m before determining the canard deflection necessary to

generate the commanded acceleration, illustrated in Figure 4.2.

Figure 4.2: ProNav with Gravity Bias Geometry

Despite its simplicity, this small change drastically reshapes the average trajectory

and greatly improves performance. Figure 4.4 shows the results of the simulation run-

ning the exact same initial conditions as seen in Figure 4.3 except the guidance system

48

is ProNav GB. It is easy to see that control authority is not wasted at apogee, the final

terminal angle is more negative, and altitude is straighter. In fact, ProNav is not just

wasting control authority but pulling in the wrong direction. ProNav GB discovers that

it must pull up or suffer the same fate as ProNav and miss the target. However, note

that Figure 4.4 shows the canard deflection gradually relax then spike as the target ap-

proaches. Without this correction at the end, ProNav GB would have missed. Ideally, it

would make this correction as early in the trajectory as possible, reducing the detrimental

effect on terminal angle. ProNav GB is certainly not ideal, just better.

49

(a) Saturated Canard Deflection vs Time

(b) Pitch vs Time

(c) Height vs Time

Figure 4.3: ProNav Misusing Control Authority

(a) Saturated Canard Deflection vs Time

(b) Pitch vs Time

(c) Height vs Time

Figure 4.4: ProNav GB Using Control Authority

50

4.1.3 Offset Target Scale

OTS continues this escalation, adding a few more steps to the guidance process with

the hope of significantly bettering the munition’s performance. This method utilizes a

falling aim point, starting at the intersection of the target’s downrange value and the

munitions maximum altitude, see Figure 4.5. It falls as the following function:

Ha =
1

2
gcOTSgaint

2
goest

(4.6)

Figure 4.5: OTS Geometry

In Equation 4.6, Ha is the aiming point height, g is a constant approximation of grav-

ity, OTSgain is a user defined constant gain, and tgoest the estimated time until impact.

Looking at the equation, it is obvious that the units of the aiming point are dependent

on the length units used in the gravitational approximation. Depending of the gain used,

this falling aim point can keep OTS from ProNav’s tendency to “belly-flop” into the

target.

Specifically, besides the moving aim point and some additional stability checks, the dif-

ference between OTS and ProNav GB boils down to one additional step. OTS estimates

the time until impact as portrayed in Equation 4.7. Note that this is an approximation

of the time until impact. The validity and affect of this assumption on the munition’s

performance is tested later in this work.

51

tgoest =

−−→
LOS · ~v
|~v|2

(4.7)

These few differences all occur within homing cmd.m. In guidance cmd.m, OTS acts

identically to ProNav GB.

52

Chapter 5

Establishing The Baseline

Performance

5.1 Software Performance Envelope

The first step in establishing a baseline is to determine an appropriate way to quantify

and compare performance. The chosen metric looks at probability of kill versus minimum

terminal angle. Probability of kill is an attempt to quantify the munition’s lethality in

a single number. Lethality is assumed to be a function of terminal angle and accuracy.

Accuracy is intuitively a part of measuring the munition’s effectiveness as is terminal

angle, especially against hardened targets. Without further information, these two terms

are weight equally. Accordingly, probability of kill is defined as the percentage of sce-

narios within the seed that hit within five meters of the target with at least a certain

amount of terminal angle. Figure 5.1 shows the performance of each one of the 500

Monte Carlo scenarios for one simulation configuration. During baseline determination,

a configuration refers to a particular guidance gain and rocket ignition time (RIT) setting

that is held for all the Monte Carlo scenarios. While both ProNav GB and OTS have a

couple tunable gains, only one is adjusted while the others are held constant. It is also

important to bear in mind that, while it is possible to specify an ignition time for the

rocket, each scenario has some random error. Figure 5.1 demonstrates a few scenarios

that failed to hit and that, even within the portion that hit the target, some landed with

more desirable terminal angles than others. Note that this figure and all subsequent

performance metric figures display terminal angle as a positive number. All favorable

terminal angles are negative within the simulation. However, the sign is switched so

that the more preferred conditions are up and/or right in the figures. Besides creating a

more intuitive figure, eliminating the negative signs also removes redundant data as all

53

scenarios, even uncontrolled ballistic firings, impact the ground with a negative terminal

angle.

Figure 5.1: Downrange Miss vs Terminal Angle for Single Monte Carlo Run

Figure 5.2 illustrates how the data in Figure 5.1 appears in the performance metric.

Each of the “x”’s represents a minimum terminal angle bin. After the data is generated,

a file runs through and determines for the run how many of the 500 scenarios in the seed

hit the target with at least the terminal angle specified by that bin. It performs this

for all the bins, from 30◦ to 80◦ in 0.2◦ increments. The “x”’s are not connected. The

metric has many practical applications besides making large amounts of data easier to

evaluate. It portrays the trade off between terminal angle and probability of kill, quickly

showing the cost/benefit of changing the munition’s configuration to increase the former

or latter performance factor. This is very useful when configuring the munition to have

the desired performance against a target given one or several mission constraints. For

example, assume an identified target, such as a hardened facility, requires a certain min-

imum terminal angle for the munition to cause any lasting effect. A computer or table

identifies the configuration that guarantees at least that terminal angle, according to the

simulation. The user receives this information along with the corresponding probability

of kill. Taking in to account issues such as proximity of civilian people and buildings

54

and target importance, the user decides if the munition configuration is acceptable. If

it is, the user fires the munition. If not, the user requests a configuration with a higher

probability of kill, sacrificing the minimum terminal angle. Altering the configuration

in this way increases the chance of hitting the target but lowers the minimum terminal

angle. If reducing collateral damage is the pressing priority, several shots could be fired

until one hits with the terminal angle necessary to damage the facility.

For comparison, an earlier iteration of the metric was to graph probability of hit ver-

sus 50% median terminal angle, where a “hit” was still defined as within five meters of

the target. There are two large problems with this metric. First, hitting a target alone

has no guarantee of achieving the goal since the definition has no inclusion of terminal

angle, and terminal angle is apart of effectiveness. Second, 50% median angle is not

a very useful statistic for this application. The graph should ultimately tell the user

what values to set the guidance and ignition system at to obtain a certain performance.

However, median angle only tells the user that after firing several of the munitions with

those settings specified on the graph, one could expect 50% to have the terminal angle

indicated on the graph. So even after sacrificing probability of hit, the user still has no

assurance of the expected terminal angle for a single shot.

Filling out this graph to make it useful is a simple but time consuming task. Deter-

mining when Monte Carlo testing has converged to a solution is more qualitative than

quantitative. Ultimately making that determination becomes a balance between time

and utility. For this work, simulation runs ceased once ProNav GB and OTS formed

discernible and fairly smooth envelopes. Figure 5.3 shows the final satisfactory curve.

It represents the results of varying the gain in ProNav GB from 0 to 4.3 g’s, the gain

in OTS from -0.5 to 2.6, and the RIT from 29 to 39.5s for both the ProNav GB and

OTS gain configurations. The simulation also ran cases where ProNav GB and OTS ran

simultaneously. The line on the graph connecting the circles, represents the limit of soft-

ware performance or the software envelope. The envelope represents the best discovered

performance for the range of configurations tested. Table 5.1 matches the points on the

envelope with the guidance settings used and performance achieved. Given the tested

configuration range and fairly smooth transition between configurations, the software

envelope is much closer to defining the “optimal” rather than just “good” performance.

OTS always outperformed ProNav GB and, as such, generates all the points on the soft-

ware envelope. The table only shows configurations resulting in a probability of kill over

50%. This is done to save space, and because decreasing benefits in minimum terminal

55

Figure 5.2: Single Monte Carlo Run

angle come at increasing costs to probability of kill. It is difficult to envision situations

justifying these high increases in the probability of missing the target for only a few extra

degrees of terminal angle. Because all attention is on system performance and none on

flexibility, it is impractical to program a real munition with this graph. The envelope is

used to simplify comparison with new guidance systems in the next chapter. Performance

can be compared to performance without having to quantify and compare flexibility.

5.2 Hardware Performance Envelope

While the software envelope is established, there is no method yet discussed to deter-

mine how “good” that performance is relative to the physical potential of the munition.

For the sake of discussion, imagine a performance line that quantifies the hardware limit,

a line that represents the aerodynamic limits of the munition reachable only when a

perfect guidance system had perfect a priori knowledge available. Assuming it is deter-

minable, this line has great value in illustrating how much improvement potential exists,

an item of tremendous interest especially after a successful alteration to the guidance

system. Once a method of improvement is discovered, pushing the envelope up and/or

56

Figure 5.3: Baseline Performance and Optimal Envelope

Table 5.1: Optimal Performance and Guidance Identity

Number TAmin (deg) P(Kill) (%) Guidance Gain Rckt Start (sec)
1 59.4 50.1 OTS 2.0 30.50
2 59.0 52.9 OTS 2.0 30.50
3 56.6 66.7 OTS 1.9 30.75
4 55.4 73.1 OTS 1.9 30.75
5 53.6 82.2 OTS 1.9 31.00
6 50.8 92.6 OTS 1.8 31.25
7 49.8 95.2 OTS 1.8 31.25
8 48.4 97.6 OTS 1.7 31.50
9 47.4 98.6 OTS 1.7 32.25
10 46.4 99.0 OTS 1.6 32.00
11 45.0 99.4 OTS 1.6 33.00
12 42.2 100.0 OTS 1.4 34.50

57

to the right, the hardware limit could easily show how much potential improvement re-

mains. In other words, the designer could use some amount of cost/benefit analysis to

determine when the next alteration, depending on its complexity, is no longer worth the

potential gain in performance.

While extremely useful in theory, the actual determination of this line proves difficult.

All attempts produce mixed successes, where the resulting line has to be interpreted

carefully. The final attempt represents the best balance between portraying an achiev-

able but unsurpassable hardware envelope. It assumes the optimal controller resembles a

bang-bang controller. A search algorithm attempts to find a RIT, the “ideal” RIT, that

allows the munition to hit the target if the guidance system pulls towards the ground from

the time it turns on until impact. If obtainable, the “ideal” RIT maximizes performance

as all the control authority focuses on increasing the terminal angle. When determining

this ignition time, the RIT errors are hidden from the search algorithm. This prevents

it from unknowingly adjusting to the errors, making any results impractical without im-

plementing a system to eliminate the RIT errors. Another reason to hide the RIT errors

is that the information is unobtainable when it is most desirable to know, prior to rocket

ignition. The INS could determine, within limits, how much error took place on a given

test only after the rocket started firing. The other errors are left visible for the search

algorithm because the hardware performance loop represents a perfect guidance system

with perfect pre-launch and post-launch data. This is necessary so that when modifi-

cations are made to the guidance system to adapt to pre- and post-launch information,

its performance can never surpass this established hardware envelope. It would serve as

a poor measure of the system’s ultimate performance limit if a software system change

causes the munition performance to exceed the hardware envelope.

With the errors back in place, a 3σ, 1 second, safety margin is added to the ideal

RIT. For example, if a RIT of 29.8 seconds puts scenario 186 within 5 meters of the

target, the safety margin changes that ignition time to 30.8 seconds. Recalling that a

later ignition time causes the munition to ballistically travel a shorter distance, requiring

that the guidance system pull up for some amount of time before directing its effort to

pulling down and increasing terminal angle. This hardware performance attempt then

takes that rocket ignition time with the safety margin and uses a search algorithm to find

the minimum time to pull up. It pulls up immediately after the guidance first turns on

to increase downrange just enough so that it can spend the rest of its control authority

pulling down. Table 5.2 shows the statistics and distributions generated by the ”ideal”

58

controller up-time search algorithm. The first column shows the attribute of interest.

The difference between the two “up time” attributes is that Ctrl Up Time is the time

to pull up requested by the search algorithm. This is not identical to Actual Up Time

because the simulation runs at a variable time step so guidance may not be able to change

the canard deflection at the exact time of the command. Scope identifies whether the

statistics shown are for all the data or only the filtered out successes, hitting within five

meters of the target. The last two columns show the spread of the “ideal” control up

time. Demonstrating the factor’s sensitivity, there is only around a four second difference

between the shortest and longest downrange scenario in the Monte Carlo seed. Figure

5.4 represents Figure 5.3 with the generated hardware performance limit. The unfiltered

hardware performance envelope has no implementable value and is not shown in any

following performance figures. It is merely presented to visually demonstrate that the

lift per unit of canard deflection when the guidance first runs on for the short range

scenario is too sensitive for the simulation to converge to a solution for all scenarios with

its current tolerance.

Table 5.2: “Ideal” Control Up Time Statistics and Distribution

Scope Mean 50% Median Std Dev. Earliest Latest

DR Miss (m) Filtered 0.15 0.13 2.60 NA NA
All -185.20 -0.64 741.02 NA NA

Ctrl Up Time (sec) Filtered 3.13 3.27 0.89 0.33 4.50
All 3.34 3.53 0.99 0.00 4.50

Actual Up Time (sec) Filtered 3.13 3.27 0.89 0.33 4.50
All 3.33 3.51 0.99 0.00 4.50

Terminal Angle (deg) Filtered -72.82 -72.20 5.10 NA NA
All -73.19 -72.34 6.09 NA NA

There are many important points to keep in mind when interpreting this hardware

envelope. Because the rocket ignition time and time to pull up are hard coded, any

unaccounted or imperfectly accounted force that drives the munition towards the tar-

get puts the munition in an unrecoverable state. The flexibility gained by adding the

safety margin to the ideal RIT is eliminated by determining the minimum control up

time. After pulling up for the determined amount of time, the munition has just enough

control authority left to hit the target. Any miscalculation in such factors as control

authority, wind, and air density, doom the munition to miss the target. As a result, the

performance represented in Figure 5.4 is not obtainable since this guidance could not be

implemented on real world system even if the guidance system had perfect knowledge

59

Figure 5.4: Software and Hardware Performance Envelope

and could change the RIT after launch.

In some ways this is a benefit, and in others, a detriment. For example, this hard-

ware envelope is a good ceiling to have as it can never be out done, one of the aims.

Solutions will just approach it. On the other hand, this boundary does not give a great

idea how much improvement is possible on a system that needs to balance performance

and flexibility. For other works, adjusting the methodology of the attempt could create

a more realistic hardware boundary that incorporates flexibility is a more practical man-

ner. Staying in line with the idea of the software envelope, this is actually desirable for

this thesis work and allows easier comparison of pure performance to performance. As

such, this attempt suites the needs of this work well.

60

Chapter 6

Industry Standard Guidance

Algorithm Characteristics and Issues

In addition to any issue mentioned for a particular guidance system, all of these models

thus far share some important disadvantages. Understanding these problems are critical

to designing a new guidance system that can match these older algorithms when they

are at their best and beat them outright when at their worst.

As is seen, all of the standard guidance systems have at least one user-defined, unitless

gain. Usually these gains are just a tuning knob with no link to the physical system.

Determining appropriate settings for this gain normally comes from simply running the

simulation a very large number of times. During these runs various parameters are sys-

tematically altered so that eventually enough of the system’s state space is examined.

Even within this relatively basic simulation there are too many parameters to directly

examine every scenario, or possible combination of parameters, so a method known as

Monte Carlo testing is utilized. In Monte Carlo testing, many of the parameters are

normally distributed with statistically determined sigma values. A large number of runs

are accomplished, this work used 500, constituting a seed. Within this seed, the standard

deviation is randomly determined for every run’s normally distributed parameters . The

seed is held constant for all simulation runs so that each run is faced with the same,

unknown errors. In the end, if enough scenarios are run, it is assumed that all of the

most likely scenarios are examined. So if the guidance system performs well within the

Monte Carlo runs then it should perform well for the vast majority of real world scenar-

ios. There are many debatable assertions made within this argument. To name just a few:

1. How many runs constitutes a “large number”?

61

2. How were the standard deviations determined for each parameter?

3. How well do those standard deviations encapsulate the system’s real environment?

4. In the end, is the modified guidance system now adjusted for real world or just the

seed?

Additionally, these systems are by design rather inflexible. Anytime a significant pa-

rameter in the rest of the simulation or real system is altered, the test campaigns have

to be rerun to ensure the old gain has not made the guidance too unreliable. To help

compensate, the designer is forced to sub-optimize performance for the sake of robust-

ness. This is a necessity because the unitless gain is based on simulation runs, where

both the run settings and simulation itself are imperfect matches to the real world. So

after all the Monte Carlo simulation runs necessary to define the optimal gain, a sensible

implementer for this kind of empirical guidance system must sacrifice for a factor of safety.

6.1 Correlation

There are several other weaknesses in the mentioned guidance systems. Most impor-

tantly, all of the above guidance systems, as described, are largely fixed from the time

of launch to the end of the flight. Vast amounts of new information becomes available

through GPS and the system’s INS, yet little of it is used in the guidance system. Also,

while it accounts for gravity, OTS does not account for other significant forces that could

be approximated relatively easily, such as drag and lift. However, attempting to augment

the current guidance system to beneficially use all the new information obtained after

launch would be difficult and greatly increase the computational demand. Understand-

ing which parameters the performance most heavily depends upon could give an idea of

where to focus attention.

The simulation conducted several correlation tests to try to filter the most important

information from the rest. Figures 6.1 and 6.2 visually represent the correlation coef-

ficients of the performance parameters and errors to each other. Table 6.1 holds the

name of the performance parameter or error to the corresponding row and column in

the figures. For example, the most significant negative point in Figure 6.1, the darker

blue point in row 2 column 12 of Figure 6.2, is the correlation of the aerodynamic center

of pressure modeling error, Xcpbt
error, to terminal angle. Also note that the matrix is

symmetric, as the correlation of Xcpbt
error to terminal angle is exactly the same as the

correlation of terminal angle to Xcpbt
error. The MATLAB color scheme “JET” is used,

62

meaning dark red corresponds to a perfect proportional correlation of 1, while dark blue

represents a perfect inverse correlation of -1. Colors in between correspond accordingly.

As seen in Figures 6.1 and 6.2, each factor perfectly correlates with itself, represented

by the high, dark red peaks on the diagonal. There also is some significant correlation

in the 12th row/column, the Xcpbt
error, and near the origin, the rocket errors. The

majority, in between light yellow and light blue, is noise. Logically, this makes sense as

a randomly generated error should have no significant correlation to another randomly

generated error.

Figure 6.1: 3D Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec

The level of noise is difficult to accurately quantify. However, looking at the maximum

absolute value of correlation between the errors for several runs indicates the noise very

rarely exceeds a correlation of 0.2. Therefore, any correlation value at or below that value

is regarded as noise and ignored. Figure 6.3 shows a stem plot of the correlation factors

for the particular run used in this example. The figure views the correlation matrix along

the correlation-matrix row axis, more clearly illustrating the noise level.

There is also concern that the correlation coefficients do not represent the true trend

in a data set, but are the function of just a few large outliers within each Monte Carlo

63

Figure 6.2: 2D Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec

Table 6.1: Performance Parameter and Error Row/Column (i/j)

i/j Label i/j Label i/j Label
1 Downrange Miss 13 ∆CPδ Error 25 Mach 2.00 Error
2 Terminal Angle 14 Mach 0.00 Error 26 Mach 2.50 Error
3 Burn Time Error 15 Mach 0.60 Error 27 Mach 3.00 Error
4 Ignition Time Error 16 Mach 0.80 Error 28 Mach 3.50 Error
5 Gun Velocity Error 17 Mach 0.85 Error 29 Mach 4.00 Error
6 Thrust Error 18 Mach 0.93 Error 30 Mass Error
7 Gun Elevation Error 19 Mach 0.98 Error 31 CG Error
8 CNα

Error 20 Mach 1.05 Error 32 Standard Pressure Error
9 CD Error 21 Mach 1.10 Error 33 Standard Temp Error
10 CNδ

Error 22 Mach 1.20 Error 34 Wind xA Error
11 CMδ

Error 23 Mach 1.40 Error 35 Drag Error
12 Xcpbt

Error 24 Mach 1.60 Error 36 Lift Error

64

Figure 6.3: Stem Plot of Correlation Factors for OTS 1.7 and Rocket Ignition 31 sec

run. For several cases, all the coefficients are checked to confirm this is not occurring.

Figure 6.4 shows terminal angle versus the standard deviations of two errors for each of

the 500 scenarios in the seed. Figure 6.4a demonstrates the appearance of such a compar-

ison when the error, Xcpbt
, had a relatively strong inverse correlation coefficient. Figure

6.4b illustrates the same comparison but against an error, Mach 3.50, with a negligible,

noise level correlation coefficient. As demonstrated, the correlation coefficients properly

represent the strength and direction of trends in the data.

To create a view of the correlation independent of the particular guidance gain and

rocket ignition time of a single run, the correlation coefficients of many runs are averaged

together. Table 6.2 shows these average correlation coefficients for the simulation runs in

Figure 5.1, which represent an OTS gain range of 1.2 to 2.2 and a rocket ignition start

range of 29 to 35.5 seconds. Only those coefficients corresponding to the performance

parameters are shown. There are only two errors with correlation coefficients above the

noise level. The data indicates that more accurately quantifying the Xcpbt
error should

help both the downrange miss and terminal angle, while improved knowledge of the

true ignition time should help only the terminal angle. If post-launch information is

intelligently used to improve the guidance system’s knowledge of these two errors, the

65

(a) Xcpbt

(b) Short Range δ
g

Figure 6.4: Terminal Angle vs. Standard Deviations of Two Errors

66

munition’s performance may improve. Implementing a way to reduce the other errors

appears ineffectual.

Table 6.2: Performance Parameter Average Correlation to Simulation Errors

Error DR Miss TA Error DR Miss TA
Burn Time -0.109 0.180 Mach 1.05 0.007 0.011

Ignition Time -0.183 0.280 Mach 1.10 -0.022 0.016
Gun Velocity 0.075 -0.189 Mach 1.20 0.024 0.051

Thrust -0.030 0.011 Mach 1.40 -0.029 0.024
Gun Elevation 0.001 -0.047 Mach 1.60 -0.006 0.041

CNα 0.001 0.047 Mach 2.00 0.056 -0.035
CD -0.056 0.122 Mach 2.50 0.051 -0.141
CNδ

-0.014 0.014 Mach 3.00 0.056 -0.172
CMδ

-0.029 0.028 Mach 3.50 0.032 -0.103
Xcpbt

0.248 -0.594 Mach 4.00 0.032 -0.009
∆CPδ 0.008 0.017 Mass -0.073 0.015

Mach 0.00 -0.003 -0.06 CG -0.042 0.089
Mach 0.60 -0.056 0.074 Standard Pressure -0.080 0.164
Mach 0.80 -0.020 -0.075 Standard Temp 0.031 -0.190
Mach 0.85 -0.001 -0.008 Wind xA 0.141 -0.187
Mach 0.93 -0.047 0.049 Drag -0.033 0.143
Mach 0.98 0.020 0.005 Lift -0.047 0.035

6.2 Time-to-Go Estimate

As described earlier, there is a time until impact estimate within OTS, called tgoest ,

that is used to adjust the aiming point. Given earlier, equations 4.6 and 4.7 estimate

both the tgoest and aiming point height. If shown to be poor approximations and a better

method of determination is discovered, performance might improve. Figures 6.5, 6.6,

and 6.7 show the aiming height as a function of both the actual and the estimate time

until impact. Each figure used the guidance gain and rocket ignition time specified in

the caption, and only represent four of the 500 scenarios for each run, randomly chosen.

The true time until impact is determined after the simulation run, where the time data

is re-centered about the actual time of impact. The aiming point is then calculated. The

assumed time until impact is saved during runs, and the aiming height is calculated after

the simulation run is complete. Saving the latter aiming height directly is easier but

would require a revision in the simulation.

These figures, and others not shown, indicate several behaviors of the estimation, some

67

Figure 6.5: Aiming Height vs tgo, tgoest for OTS gain 2.0 and Rocket Ign of 30.5 sec

Figure 6.6: Aiming Height vs tgo, tgoest for OTS gain 1.8 and Rocket Ign of 31.25 sec

68

Figure 6.7: Aiming Height vs tgo, tgoest
for OTS gain 1.4 and Rocket Ign of 34.5 sec

which may be corrected to improve performance. The current estimation converges to

the truth as time until impact approaches zero. This means any correction made should

be engineered to have the greatest affect when the guidance system first turns on and

gradually fade to nothing. Comparing the three figures, the estimated aiming height

is not always greater than or less than the actual. However, once initialized as either

greater than or less than, the estimated aiming height tends to maintain that relation-

ship as it converges. Additionally, the estimated aiming height’s tendency to initialize

greater than the actual increases as the rocket ignition start time occurs later. The data

gathered shows that an equal tendency between estimated aiming height and OTS gain

value does not exist. This indicates that trends exist between the error in aiming height

and available post-launch information. So if the guidance system were altered to include

such information as actual rocket ignition time, perhaps error in the aiming height could

be reduced, ultimately improving performance.

However, before determining if such an alteration is possible, the benefit of reducing

estimated aiming height error needs analyzed. The best possible outcome is to reduce

that error to zero. By running the simulation with the true time until impact gathered

from previous runs, the estimated aiming height error is nearly negated. It is not entirely

69

eliminated as the same scenario with every parameter unchanged, except the estimated

time until impact, flies a slightly different flight path. Modifying the flight path changes

the actual time until impact, so as the time until impact drops below ten seconds, it

returns to the old method of estimation. This should not be a big concern as the esti-

mated aiming height converges to the actual near the ground. If completely eliminating

the tgoest error improves performance, a more implementable solution to do so could be

attempted. However, if the performance does not improve with nearly perfect time until

impact knowledge, it is a waste to attempt a more realistic solution.

6.3 Dynamic Programming and Varying Guidance Gain

6.3.1 Background

As described, the industry standard guidance systems have a user defined gain that

remains constant for a particular run. Prior to fielding, designers use simulations and real

world runs to determine the proper gain setting as a function of physical parameters. This

“proper” gain setting function is not an optimization process. It is a somewhat subjective

attempt by the designer to balance robustness and performance given the characteristics

of the munition and the requirements of the user. The purpose is so the actual end user

does not have to intimately know the munition to effectively use it. As a simple example,

the user might just specify the distance to the target, information available to someone

on a ship, and the system chooses the preselected designer gain to exhibit the desired

performance for that scenario. Therefore, while it is not hard coded from scenario to

scenario, the guidance gain is constant for a particular firing. While more complicated,

a varying gain guidance system may perform better.

Dynamic programming tests this theory. It is an optimal control method that at-

tempts to either minimize a cost or maximize a reward. This implementation of dynamic

programming utilizes the idea of a cost rather than a reward. The form of the cost is user

defined and mathematically represents the undesirable outcomes [7]. Despite it being a

function of the system under investigation, there is some latitude in defining the cost.

However, improperly defining it can create serious problems as dynamic programming

attempts to minimize a cost poorly related to a system’s performance metric. Debatably

the most crucial aspect of it, dynamic programming is able to balance the preference

for small present costs and the dislike of high future costs. Dynamic programming sums

both the present and expected optimal future costs for subsequent stages when choosing

70

the current best action. The optimal control is defined as being a closed-loop optimal

control of the form shown in Equation 6.1 [27].

u? = f(x(y), y) (6.1)

Above, x are dependent states, y is the independent state, u is the control, and a

“star” superscript represents optimal. The relationship between the states and the opti-

mal control is known as the optimal control policy, f . A concept known as the “Principle

of Optimality” is used to find the optimal control policy [27]. The principle is easily

explained with an example. As seen in Figure 6.8, there exists three possible states, a,

b, and c, in a multistage decision process. If the minimum cost from state a to b is J?
ab

and the minimum cost from state b to c is J?
bc, then the minimum cost from a to c has

to be J?
ac, where:

J?
ac = J?

ab + J?
bc (6.2)

Figure 6.8: Principle of Optimality

The principle is easily proven through contradiction. The consequences of the Prin-

ciple of Optimality on dynamic programming are best demonstrated by another simple

example based on an illustration in Optimal Control Theory: An Introduction [27], shown

71

in Figure 6.9. Assume the goal is to transition from state a to f with the minimal cost.

The direction and cost of transit between states is shown in the figure. Starting at a,

suppose the minimum costs from b to f , J?
bf , and from c to f , J?

cf , are known. The

decision is made by simply finding the lesser of the two costs:

Figure 6.9: Principle of Optimality

J?
af = min

{
J?

abf , J
?
acf

}
J?

af = min
{
Jab + J?

bf , Jac + J?
cf

}
J?

af = min {2 + 6, 4 + 3}

J?
af = 7

(6.3)

As demonstrated, the optimal first step when traveling from state a to f is to go to

state c. On a simple level, the example demonstrates how dynamic programming works,

and how it balances between present and future costs. The large future costs of b to f

outweigh the small present cost of a to b, so dynamic programming chooses the other path.

This leaves just one more issue to discuss, determining J?
bf and J?

cf . Dynamic program-

ming calculates these optimal costs starting at the end, state f , and working backwards.

For example, as there is only one way to travel from state e to f :

72

J?
ef = 1 (6.4)

In this simple example, optimally moving from d to f is only slightly harder. There

are two choices, the lower cost establishing the optimal control. Just as before:

J?
df = min {Jdf , Jdcef}

J?
df = min {7, 1 + 2 + 1}

J?
df = 4

(6.5)

This process of working backwards from the goal continues until the optimal cost and

control policy from a to f are known.

Stepping back from this simple, specific example, the process of determining the op-

timal cost can be represented as: [25]

J?(xi
k, yk) = min

xj
k+1

[∆J(xi
k, x

j
k+1) + J?(xj

k+1)] (6.6)

or

J?(xi
k, yk) = min

uij
k

[g(xi
k, u

ij
k , yk)∆y + J?(xj

k+1, yk+1)] (6.7)

Above i and j delineate between dependent states, k is the step number, and g is an

approximation of an integrated cost. Equation 6.7 states that if the best path is know

at states xj
k+1 and yk+1, the control from state i to j at step k that minimizes the cost in

between defines the optimal cost at states xi
k and yk. The difference between equations

6.6 and 6.7 is that the first determines the control that moves the state from state i

on grid k to state j on grid k + 1, while the second quantizes the control inputs and

evaluates the resulting state from each possible input. The latter method, which better

describes the one implemented, develops an optimal control policy, from step k = end to

step k = 1 that optimally transitions the system from any current state to the state at

the next step along the path. For more information on dynamic programming, consult

Bertsekas [7], Kirk [27], or Bellman [6]

73

6.3.2 Cost Function Determination

Properly defining the cost function is a critical aspect to implementing dynamic pro-

gramming. The coefficients in Equation 6.8 create a cost function with a strong preference

for very small downrange miss, 90% of the cost reduction is within ±20 m of the target.

Equation 6.9’s coefficients reflect more of the specific attributes of this system. Similar to

the downrange miss, this cost function’s greatest area of cost reduction is in the center. At

a terminal angle of −60◦, the cost if 0.5, and at a terminal angle −60◦±20◦ the cost is 0.9

and 0.1, respectively. Ballistically, this system impacts the ground with a terminal angle

around −45◦. The terminal angle cost slope is designed to give dynamic programming

the strongest incentive to pull the nose down only to a point. After −65◦ or −70◦, the

cost reduction drops off, which, hopefully, causes dynamic programming to stop focusing

as much on reducing the terminal angle. Limitations of this system make it extremely

difficult to exceed −70◦. Without reducing its priority, dynamic programming may waste

a lot of control authority attempting to pull the nose down a few degrees instead of focus-

ing on a more accomplishable goal of further reducing the downrange miss. Ultimately,

the implemented cost function is merely a summation of the following two cost equations:

JR
end = 1− 1

0.0225
√
x2

TCEF + y2
TCEF + z2

TCEF + 1
(6.8)

JT
end = arctan

(
0.1539 θend + 9.234

π
+ 0.5

)
(6.9)

Jend = JR
end + JT

end (6.10)

Both functions are bounded between zero and one. Therefore, the total cost is bounded

between zero and two. There is no direct cost placed on control. However, since the total

control authority is limited, the runs with the least cost and best performance are those

runs that best utilized their control. Above, x, y, and z are components of the terminal

location relative to the target, Target-Centered, Earth-Fixed (TCEF) frame. There are

no specific requirements for the position vector’s coordinate frame in Equation 6.8. As

long as the coordinate frame is centered at the target, the equation works. Terminal

points stop when impacting the ground, leaving altitude equal to zero and cross range

is also zero since it is currently not implemented. As a result, regardless of coordinate

frame, any magnitude remaining in the position vector is downrange miss. Figures 6.10

and 6.11 respectively illustrate the previously described behaviors of the cost functions.

74

Figure 6.10: Downrange Miss Cost

Figure 6.11: Terminal Angle Cost

75

The relationship of these two cost functions is also critically important to the ultimate

performance of dynamic programming. With the described setup, the cost functions are

the same as the primary metric, the probability of kill versus minimum terminal an-

gle. The ability of the cost function to generate a high performance control policy relies

heavily on the cost reduction rates or slopes within the functions and capabilities of the

munition. For example, dynamic programming may find that little control is required

to reduce the downrange miss to 6 m. Because of some physical characteristic of the

system, attempts to further reduce the downrange miss require the remaining control

authority. Instead, dynamic programming may then decide to split the control author-

ity between reducing the terminal angle and the downrange miss because it results in

a lower terminal cost. In the end, the optimal control policy causes most of the Monte

Carlo scenarios to finish with a downrange miss slightly greater than 5 m and a very

good terminal angle. However, when plotted on the probability of kill versus terminal

angle metric, performance would appear poor as most scenarios did not hit the target

by definition. While a possibility, this situation is unlikely because of the capabilities of

the particular system modeled and the slope of downrange miss cost as it approaches zero.

Because of concern for the above behavior, the first cost function attempt more di-

rectly connected with probability of kill and minimum terminal angle. Total cost was

still a summation of downrange miss and terminal angle cost. However, reductions in

terminal angle cost were possible only when the absolute value of downrange miss was

less than 5 m. Therefore, the optimal control policy favored scenarios with good terminal

angles only once a hit was ensured. Unfortunately, the bandwidth for the downrange miss

cost proved too narrow for the grid discretization, and almost every state combination

failed to have any reductions in cost. Without any cost reductions, the resulting control

policy merely reflected its initialized values. This led to very poor performance compared

with a control policy derived with the current cost function. While not ideal, the utilized

cost function balances metric performance and bandwidth well.

6.3.3 Discretization Grid

In comparison to simply attempting every possible state and control combination, dy-

namic programming scales better as:

N = NiN
κ
x (6.11)

76

In Equation 6.11, N is the total number of points, Ni is the number of discretizations

in the independent variable, and Nx is the number of quantized states of dimension κ.

While this is an improvement versus blind testing, dynamic programming scales poorly

for higher dimension problems when compared to other algorithms, such as A? and Dijk-

stra’s [30]. This scaling issue is so prominent a characteristic that shortly after Bellman

introduced his generalization of the classical Hamilton-Jacobi theory [8], he coined the

now famous phrase “curse of dimensionality” [6] to describe it. As an example of this,

the first version of dynamic programming attempted a uniform, polar, target centered

discretization of a simplified two DOF, four variable state space. The four variables

were position from the target magnitude (R), line of sight angle from target to muni-

tion (LOSt), velocity magnitude (V), and pitch angle (θ). Limiting the launch, target,

and munition states to a two dimensional plane, these four scalar variables are all the

information necessary to completely define the problem [19]. The first two states are

centered at the target. For the sake of the example, assume each state is only chopped

into ten slices, every state combination has only ten control options, each unique state

combination and control option combination has to run through the entire Monte Carlo

seed, and each individual test takes one second. The resulting estimated total simulation

run time is shown below. It is clearly unacceptable.

Estimated Run Time = 104 × 10× 500× 1 = 5× 107 s ≈ 1.58 yr (6.12)

Not only would it have run time problems, the preceding example has extremely poor

resolution in necessary parts of the state space and wastes grid points in unnecessary

parts. It simultaneously fails to supply satisfactory resolution and finish in a reasonable

time.

A low control authority system actuals facilitates the task of limiting the state space.

Even with control extremes, the path a successful munition travels from the launch to the

target point is fairly well bounded. Better still, the exhibited performance of those few

extreme cases is undesirable. As a result, any scenario outside of a nominal trajectory

can use hard coded control to return within an acceptable distance of the nominal. This

eliminates many areas of the total state space dynamic programming needs to test.

To determine the nominal trajectory, the simulation gathers the state information

over the entire trajectory for a range of constant OTS gains. Previous testing establishes

the appropriate range of OTS gains, where gains between 1.4 and 2 created the optimal

77

performance envelope. For additional robustness, runs used gains between −1 and 2.5.

Figures 6.12, 6.13, 6.14, and 6.15 show the median nominal trajectories state information

versus downrange miss, the independent variable, for all the Monte Carlo scenarios. Each

OTS gain state information is displayed in a different color. Also illustrated are the ±1

standard deviations from the median values, which usually grow as the munition travels

from the launch point.

In the figures, the black dots represent the chosen grid points. They are functions of

the most extreme minimum and maximum standard deviation values at a specified down-

range miss. The distance between specified downrange misses shrinks as the munition

approaches the target and the standard deviations grow. The two specified downrange

misses furthest from the target occur before any of the scenarios at that distance and the

next distance have a low enough pitch for the guidance system to activate. As a result,

they are not added to the state grid. Figures 6.16, 6.17, 6.18, and 6.19 demonstrate this

method of discretization’s ability to cover the state space of all the scenarios. In the

end, this method of discretization limits the state grid to 437 unique state combinations.

While still very computationally demanding relative to the other methods tested, this is

a huge reduction from the total unique states described in the earlier example and still

supplies adequate resolution near the target [46].

78

Figure 6.12: Nominal Range Magnitude to Target vs Downrange Miss

Figure 6.13: Nominal Line of Sight Angle vs Downrange Miss

79

Figure 6.14: Nominal Velocity Magnitude vs Downrange Miss

Figure 6.15: Nominal Pitch Angle to Target vs Downrange Miss

80

Figure 6.16: Range Magnitude Grid over All Scenario Trajectories

Figure 6.17: Line of Sight Grid over All Scenario Trajectories

81

Figure 6.18: Velocity Magnitude Grid over All Scenario Trajectories

Figure 6.19: Pitch Angle Grid over All Scenario Trajectories

82

6.3.4 Implementing Dynamic Programming

In general, dynamic programming works as a value iteration process. A value matrix

initializes with problem specific values. An iterative process determines the lowest cost

action to take for each value matrix entry. Iterations through the matrix continue until

the solution converges. This process is summarized in the algorithm below.

INITIALIZE VALUE MATRIX

V (x) =
{

J(x) If x is a terminal state
3 Otherwise

i = 0

REPEAT for all x

V (x)i+1 = min
u

V i(f(x, u))

ζ = max
x
|V i(x)− V i+1(x)|

i = i + 1
UNTIL |ζ| < 0.01

Algorithm 2: Dynamic Programming Algorithm

The value function, V (x), is initialized to a cost of 3 for all non-terminal states. As de-

fined the maximum cost is 2. This impossible cost is always replaced on the first iteration.

At the beginning of the simulation run, a list of control options, OTS gains, is spec-

ified. The simulation runs every state combination at the smallest specified downrange

miss to target with every available OTS gain until each scenario hits the ground. Initially,

each state combination with each OTS gain only tests through the first 25 Monte Carlo

scenarios. The simulation then determines the cost according to Equation 6.10 for each

state/control combination. The cost of that state combination and OTS gain is the 50%

median of those 25 scenarios’ terminal conditions. For each state combination, the OTS

gain producing the lowest cost is saved as the optimal cost along with its gain. Once the

optimal cost and gain are determined for all state combinations nearest the target, the

simulation tests all state combinations at the next specified downrange miss nearest the

target. This time, the simulation runs each state combination using each OTS gain until

its current downrange miss is equal to the nearest specified downrange miss. Its ending

83

state information is compared to the starting state combinations of the nearest specified

downrange miss. The simulation determines the two closest by minimizing the vector

norm and interpolates the cost. The interpolation process is summarized below.

J211 =
(J?

2 − J?
1)rn1

r21
+ J?

1

J122 =
(J?

1 − J?
2)rn2

r21
+ J?

2

J121 = J?
1 −

(J?
2 − J?

1)rn1

r21

J212 = J?
2 −

(J?
1 − J?

2)rn2

r21

Jn =
J211 + J122 + J121 + J212

4

(6.13)

The process persists until the simulation determines the lowest interpolated cost for

every state combination at the second nearest specified downrange miss. It then contin-

ues to work from all the state combinations at the next nearest specified downrange miss

until it reaches the furthest downrange miss states. The whole process starts back at the

first states tested until the largest change in optimal cost for all state combination falls

below an established value.

The resulting control policy is a table of state combinations and each one’s minimum

cost guidance gain. During a performance run, the simulation simply stores the table

for reference. When called, homing cmd.m takes the current state information and looks

up the two closest state combinations in the table, determined by minimizing the vector

norm. Combined with the two closest table values and their minimum cost guidance

gain, guidance linearly interpolates the gain to use. Other than the interpolated gain

replacing the constant gain, the guidance system continues the process described in the

previous chapters that ultimately results in a canard deflection command.

The assumptions to use the 50% median to determine cost and to calculate the optimal

control policy with only 25 of the 500 Monte Carlo scenarios are not blindly accepted.

They both raise a multitude of issues. Some are addressed later, while others are left to

future work.

84

Chapter 7

New Guidance Attempts and

Results

Overall, dynamic programming expanded the software envelope along the entire met-

ric and was the only attempt nearing an implementable stage. Table 7.1 gives an initial

impression of each attempts’ effect on the software envelope (SE) performance, given an

arbitrary constraint. The constraints are just two of many possible constraints placed

on the munition by the user. The two arbitrarily chosen constraints give an idea of the

performance improvement gained by implementing each attempt. The two constraints

are configuring for the largest minimum terminal angle (TAmin) given a required proba-

bility of kill (P(Kill)), and configuring for maximum probability of kill given a required

minimum terminal angle. For the probability of kill constraint, improvement is measured

as the gain in minimum terminal angle. For the minimum terminal angle constraint, im-

provement is measured as the gain in probability of kill. The new attempts are listed in

the order this chapter presents them: dynamic programming (DP), predictive rocket ig-

nition time (PRIT), eliminating the Xcpbt
error (No Xcpbt

Err.), eliminating the rocket

ignition time error (No RIT Err.), having a near perfect time until impact estimate

(Perf. tgoest), and the first attempt at an implementable way to reduce the time until

impact estimate error (New tgoest). Given the selected constraints, Table 7.1 shows that

dynamic programming does not result in the greatest performance improvements com-

pared to the other attempts. However, dynamic programming’s gains in performance are

realized improvements within the simulation, while the other attempts’ improvements

merely represent their greatest potential, except for New tgoest . This thesis does not

answer the question “how achievable are those potentials?” for most of the attempts.

While not an objective of this work, that is a critical aspect to keep in mind when viewing

Table 7.1.

85

Table 7.1: New Attempts’ Performance Improvement Given Arbitrary Constraints

Constraint: P(Kill) = 90%
SE TAmin 51.5 deg

New Attempt DP PRIT No Xcpbt Err. No RIT Err. Perf. tgoest New tgoest

TAmin 54.84 deg 55.96 deg 57.97 deg 56.08 deg 56.07 deg 51.90 deg
∆TAmin 3.34 deg 4.46 deg 6.47 deg 4.58 deg 4.57 deg 0.40 deg

% ∆TAmin 6.48% 8.67% 12.56% 8.89% 8.87% 0.78%
Constraint: TAmin = 55 deg

SE P(Kill) 75.16%
New Attempt DP PRIT No Xcpbt Err. No RIT Err. Perf. tgoest New tgoest

P(Kill) 89.47% 95.4% 98.54% 92.84% 93.20% 76.00%
∆P(Kill) 14.31% 20.24% 23.38% 17.68% 18.04% 0.84%

% ∆P(Kill) 19.03% 26.93% 31.11% 23.53% 24.00% 1.12%

Additionally, the current implementation of dynamic programming requires a spec-

ified rocket ignition time. Even though only two rocket ignition time runs converged

in time for this thesis, the envelope they created outperformed the established software

envelope throughout the entire metric, except at the unusably low probability of kill con-

figurations. Figure 7.1 summarizes the results and shows the three critical envelopes: the

software envelope, the hardware envelope, and the dynamic programming envelope. The

dynamic programming envelope is a result of two runs, with RITs of 30 and 33s and out-

performing a software envelope generated with over 100 runs that had RITs between 29

and 39.5s and OTS gains between -0.5 and 2.6. Additionally, the pains taken to carefully

discretize the state space and verify certain assumptions reduced the average run time

to just over 4 days. After discovering the negligible effect of cutting the Monte Carlo

scenario size from 25 to 5, the run time was reduced by another factor of 5 to just over

20 hours. This makes dynamic programming much more useful than originally projected

by the first time estimate determined in Chapter 6 with Equation 6.12.

The rest of this chapter first details the process that led to Figure 7.1. Then it delves

into the results of the other guidance modifications focused on using post-launch infor-

mation to beneficially change the rocket ignition time, reduce the strongly correlated

errors, and decrease the time until impact estimate error.

86

Figure 7.1: Final Performance Comparison

7.1 Dynamic Programming

This is the one modification that attempts to better utilize pre-launch information to

improve performance. For the first run, dynamic programming had an OTS gain range

from 0.8 to 2.4. It had a state grid with 469 unique state combinations and only used the

first 25 Monte Carlo scenarios to generate the optimal control policy. The assumption is

that the error dispersions between individual scenarios in the Monte Carlo seed are rela-

tively insignificant when compared to the spacing of the grid points. While the previous

figures of the grid point spacing and individual run dispersion, Figures 6.16, 6.17, 6.18,

and 6.19, visually support this, the assumption is tested more rigorously in the following

runs. Figure 7.2 shows the first results of the dynamic programming derived optimal

control policy. Regardless of how many Monte Carlo scenarios it is calculated from, the

optimal control policy’s performance is always determined with the full seed. At first,

the data results demonstrate a performance loss compared to the baseline envelope. The

hardware performance limit on the right side of the figure are merely present for reference.

Figure 7.3, a histogram of the OTS gain frequency in the optimal control policy, re-

veals the problem. The subplot entitled “Normal Gain” shows the frequency of the gains

87

Figure 7.2: Dynamic Programming Performance for First Run

in the optimal control policy that created the performance in Figure 7.2. While both the

smallest and largest gains are never chosen, 0.9 is overly represented. For several reasons,

dynamic programming determines that for most states the optimal gain is not unique.

In fact for this setup, dynamic programming had 417 state combinations with several

gains that had the exact same minimum cost. This means that about 88.91% of the total

state combinations had redundant minimum costs. As a function of the software setup,

the lowest gain with the minimum cost is chosen. This means that if gains 0.9 to 1.1 are

projected to have the same cost and that cost is the minimum for that particular state,

then 0.9 is saved in the control policy table, not 1 or 1.1.

The other subplots in Figure 7.3 help illustrate this behavior. “Filter Gain” shows a

histogram for only the state combinations with unique minimum costs. “Max Gain” and

“Mid Gain” are the gain frequencies after reexamining the control policy. “Max Gain”

replaces the current gain with the largest gain calculated to have the same optimal cost.

“Mid Gain” replaces the current gain with the average of the smallest and largest gain

determined to have the same optimal cost. Figure 7.4 illustrates the dramatic change

of performance when the “Max Gain” and “Mid Gain” control policies are tested. A

simple adjustment to the dynamic programming routine ensures that future runs choose

88

the maximum guidance gain with the minimum cost. This creates the most performance

aggressive trajectory that still minimizes the cost.

Figure 7.3: Gain Frequency of First Optimal Control Policy

The most obvious reason for these minimum cost redundancies is created by the way

guidance is activated in the simulation. Guidance only activates once the pitch has

dropped below zero degrees. The first dynamic programming run included the farthest

two specified downrange misses in the discretization figures, seen in the grid figures start-

ing on page 79. All state combinations at these specified downrange misses did not have

any scenarios with a pitch less than zero throughout their downrange miss window. Even

after the state matrix removed all points with these two downrange misses, the third fur-

thest specified downrange miss has some scenarios that do not reduce pitch below zero

before the next miss distance. As a result, the guidance system never activates. Logi-

cally, the gain has no effect on performance if the guidance and control systems are not

turned on. So in the end, dynamic programming thinks all gain options have the same

minimum cost for these state combinations.

89

Figure 7.4: Dynamic Programming Performance for First Run with Modified Control Policies

Another cause of redundant minimum costs is related to how the state matrix is formed

from all possible state combinations. The histograms paint a fairly detailed picture of

the difference between the three control policies. However, those figures portray the fre-

quency of all gains not the frequency of just the utilized gains. State combinations can

be so destined to failure that even extreme changes in the gain do not effect the cost.

The grid is well defined but not perfect. For example, looking back at the discretization

figures, there is a state combination at 100 m downrange miss with a range to target of

around 1000 m, a line of sight of 84 ◦, a velocity magnitude of just under 800 m
s
, and a

pitch of −30 ◦. Figure 7.5 illustrates this particular example. With these initial condi-

tions, the guidance system does not have enough time to positively effect the terminal

conditions regardless of the gain. As a result, dynamic programming determines that all

gain values have equal costs. This example illustrates one reason why so many redundant

optimal costs exist in the optimal control policy.

Figure 7.6 illustrates the gain used over time for the first and last five Monte Carlo

scenarios for the “Min”, “Max”, and “Mid”control policies. This figure indirectly shows

90

Figure 7.5: Example of Doomed State Combination

the frequency of just the utilized gains within the control policy, insight indeterminable

from the histograms. It is also easy to see where the three control policies differ as a

function of the simulation time.

In addition to the two issues just addressed, the relative size between specified down-

range misses, gain options, and state combinations plays a critical role in either aggra-

vating or alleviating the issue of redundant minimum cost control gains. Adjustments

to any three of these discretizations that improves the chances of generating different

costs from different initial conditions, increases the percent of unique gains in the op-

timal control policy. Figure 7.7 shows a histogram of the control policy for a dynamic

programming run with only one specified downrange miss, 6000 m short of the target. As

the figure shows, the larger spacing between specified downrange misses results in fewer

redundant optimal gains. This setup generates a control policy that has 81 redundant

minimum costs. This is out of the 256 state combinations. The percent of redundancy,

31.64%, is much lower than that of the first setup, 88.91%. This run fails to demonstrate

which issue is more influential on the percent of redundancy, state combinations before

guidance activation or specified downrange miss distance. Relative to the first one, this

run both eliminated all state combinations before guidance activation and increased the

91

Figure 7.6: OTS Gain versus Time for “Max”, “Min”, and “Mid” Control Policies

specified downrange miss spacing.

Besides the issue of multiple gains with the same minimum cost for a large percentage

of the total state combinations, the first dynamic programming run suffers from the so

far inadequately defended assumption that the control policy can be generated from a

greatly reduced number of the Monte Carlo scenarios. Figure 7.8 shows the differences

between the control policies formed with 5 and 25 Monte Carlo runs. There is clearly a

change in the gains chosen over time. However, Figure 7.8 fails to show whether those dif-

ferences are exhibited by the majority of Monte Carlo scenarios or just a few, and if they

result in significantly altered performance. Figure 7.9 shows the performance comparison

of those two control policies. The figure demonstrates that performance is not signifi-

cantly effected by the reducing the Monte Carlo scenarios from 25 to 5. However, the 5

fold decrease in computational demand has other costs to consider. Reducing the Monte

Carlo scenarios does change the optimal cost for each state. While most of the time,

this change in cost does not effect the optimal gain, sometimes it does. Additionally, the

percentage of redundancy increases from 88.91% to 96.59%. Ultimately, however, these

changes do not create a control policy with drastically different performance.

92

Figure 7.7: Gain Frequency of Optimal Control Policy with One Specified Downrange Miss

Figure 7.8: OTS Gain versus Time for “Max” Control Policies for 5 and 25 Monte Carlo Runs

93

Figure 7.9: Performance Difference Between Optimal Control Policy Generated from 5 and 25 Monte
Carlo Scenarios

Having addressed some of the significant considerations, the performance in Figure

7.4 is even better that is it originally looks. In the figure, dynamic programming’s per-

formance is compared to the optimal envelope from Chapter 5. As a quick reminder,

that envelope represents the best performance for over 100 runs where both the gain

in between runs and rocket start time were adjustable variables. When attempting to

maximize performance, dynamic programming had the ability to change the gain as a

function of the state but could not change the rocket ignition time. As such, dynamic

programming’s performance should only be compared with the performance of those runs

in the baseline that had the same rocket ignition time of 30 s, shown in Figure 7.10. In

Figure 7.4, dynamic programming outperformed the old envelope for only a part of the

metric. In Figure 7.10, dynamic programming surpasses the old data runs throughout

the entire metric. This makes sense as the a guidance system that intelligently varies the

gain over time should outperform a constant gain guidance.

While the adjusted dynamic programming demonstrated great improvements in per-

formance when compared to the constant gain runs, the software envelope in the higher

probability of kill region remained unbeaten. Table 5.1 on page 57 confirms that the

94

Figure 7.10: Dynamic Programming Performance Compared to Constant Gain Performance with Same
Rocket Ignition Time of 30s

higher probability of kill region of the envelope is formed by later rocket ignition times.

Figure 7.11 shows the results of dynamic programming when run with a rocket ignition

time of 33 s instead of 30 s. For the purposes of comparison, the simulation run used

the same state combination matrix, gain range, and number of Monte Carlo scenarios.

As expected, dynamic programming produces a control policy that in a single run with

a varying gain outperforms a wide range of constant gain runs with the same rocket

ignition time.

As mentioned earlier, Figure 7.1 shows the combined performance of the envelopes in

Figures 7.10 and 7.11.

7.2 Predictive Rocket Ignition Time Analysis

Predictive Rocket Ignition Time aims to use post-launch information to beneficially

change the rocket ignition time. However, as shown earlier, altering the rocket ignition

time is a powerful tool for changing the performance of the munition. However, because

95

Figure 7.11: Dynamic Programming Performance Compared to Constant Gain Performance with Same
Rocket Ignition Time of 33s

it is so powerful and errors exist, any modifications must be both intelligent and in-

clude a factor of safety. If made haphazardly or too aggressively, changes to the rocket

ignition time can more easily doom a single firing to failure than improve its performance.

For those reasons, investigation begins with a large safety factor, initializing all rocket

start times at the latest ideal ignition time found while hiding the rocket ignition errors,

32.31s. While this does not maximize performance, initializing at this value gives all

the scenarios in the seed an opportunity to succeed, improving performance in the sense

that no scenario is fated to fail. For comparison, starting at the earliest ignition time

would cause many scenarios to land well beyond the target, obviously not desired. Figure

7.12 shows the results from this test run. As expected, the overall performance does not

globally supersede the already established performance envelope but it is a safe starting

place. Interestingly, there are points that do break the envelope.

The next step attempts to predict a rocket ignition time that more aggressively bal-

ances between maintaining that established factor of safety and improving performance.

Using post-launch information, the munition must differentiate between trajectory cases

96

Figure 7.12: Predictive Rocket Ignition Time Results

allowing an earlier ignition time and those needing the entire safety factor. The major

obstacle is the timeline. For the short range scenario, the earliest rocket ignition time

is about 28.25 sec, meaning any decision to adjust the time of ignition must be made a

second or two before that. For a real system, the GPS receiver on the munition would

not start with an acquired signal. It is designed around the original need, to acquire prior

to the guidance system turning on. Normally, this would not happen until the munition

is near apogee, around 48 seconds for the short range scenario. Prior to calibration with

the GPS, the INS is usable but not as accurate. This timeline becomes worse for the

other scenarios, medium and long range, as the average rocket ignition time is earlier and

apogee later. As a result, if a solution is found to improve performance it would only

work for the short range scenario and if the assumed post-launch information is actually

available at the necessary accuracy and time.

With these assumptions in mind, Table 7.2 shows the correlation factors between the

ideal rocket ignition time found and actual state information at the time shown. Energy,

ξ, is a specific energy with mass divided out. It is a summation of the munition’s poten-

tial and kinetic energy at a particular time.

97

ξ = gh+
v2

x + v2
z

2
(7.1)

The table illustrates that the ideal rocket ignition time is difficult to determine from

available state information in the short time between launch and rocket ignition. It does

not show a strong propensity towards any one of the determined states, and the corre-

lation coefficients do not significantly grow even as time progresses. Additionally, this

is generated with the actual state information. Attempting to intelligently determine a

more aggressive rocket ignition time with the actually available, imperfect state informa-

tion would be even more difficult and dangerous.

Table 7.2: Predictive Rocket Ignition Time Correlation Coefficients

Time (sec) Downrange Altitude V elocityx V elocityz Energy
5 -0.469 0.466 0.538 -0.541 0.536
6 -0.489 0.485 0.548 -0.551 0.546
7 -0.505 0.501 0.554 -0.557 0.552
8 -0.518 0.513 0.559 -0.561 0.557
9 -0.528 0.523 0.563 -0.564 0.561
10 -0.536 0.531 0.565 -0.566 0.563
11 -0.542 0.537 0.567 -0.567 0.565
12 -0.547 0.543 0.568 -0.569 0.567
13 -0.552 0.547 0.570 -0.570 0.569
14 -0.555 0.551 0.571 -0.571 0.570
15 -0.559 0.554 0.573 -0.573 0.573
16 -0.561 0.557 0.575 -0.575 0.574
17 -0.564 0.559 0.577 -0.577 0.576
18 -0.566 0.561 0.578 -0.578 0.577
19 -0.568 0.563 0.578 -0.578 0.578
20 -0.569 0.565 0.579 -0.578 0.578
21 -0.571 0.566 0.579 -0.578 0.578
22 -0.572 0.567 0.579 -0.578 0.579
23 -0.573 0.568 0.579 -0.577 0.579
24 -0.574 0.569 0.579 -0.577 0.579
25 -0.575 0.570 0.579 -0.576 0.579
26 -0.576 0.571 0.579 -0.576 0.579
27 -0.576 0.572 0.579 -0.575 0.579
28 -0.577 0.573 0.579 -0.575 0.579
29 -0.576 0.573 0.510 -0.298 0.508

98

7.3 Incorporating Post-Launch Information for Strongly Cor-

related Errors

This modification attempts to utilize post-launch information to reduce the errors

most detrimental to performance. To show the value of such a modification, those er-

rors are eliminated, revealing the potential performance improvement. Table 6.2 on page

67 indicates the two errors most strongly correlated with the performance factors are

Xcpbt
and RIT error. The data indicates that more accurately quantifying the former

error should significantly improve both the downrange miss and terminal angle, while

increased knowledge of the latter should improve only the terminal angle.

To assess the value of reducing these errors, first they are simply eliminated. Simula-

tion performance without these errors compared to runs with these errors can show the

value of such a change. Running the configurations that generated the software envelope,

Figure 7.13 shows the performance change when the Xcpbt
error is eliminated. Figure 7.14

illustrates the same when the RIT error is set to zero.

Figure 7.13: Performance with No Xcpbt
Error

Although both figures show improvement above the baseline. Figure 7.13 shows that

99

Figure 7.14: Performance with No Rocket Ignition Time Error

eliminating the error with the higher correlation factor did have a greater positive effect

on performance.

7.4 Reducing tgoest
Error

The final modification attempts to utilize post-launch information to reduce the time

until impact estimate error. Before determining an implementable method, simulation

runs can determine the greatest performance gain possible from reducing the time until

impact estimation error. Using the method described in Chapter 6, Figures 7.15, 7.16,

and 7.17 illustrate the change in the aiming point height versus time until impact. The

guidance gain and rocket ignition time combinations are the same as in Figures 6.5, 6.6,

and 6.7, but the particular cases displayed are not. The simple methodology for this test

failed to completely eliminate the error for all the cases. For example, Case 446 in Figure

7.16 shows a noticeable difference between the truth and estimated aiming point height

at a given tgoest . In addition, there is a jump in the data as the guidance system switches

from the truth data to the original guidance approximation, every case in Figures 7.15,

7.16, and 7.17 illustrate this gap as tgoest passes through -10 s. However, in the end, the

100

reduction in error is significant enough to demonstrate if this modification can create a

substantial gain in performance.

Figure 7.15: Corrected Aiming Height vs tgo, tgoest
for OTS gain 2.0 and Rocket Ign of 30.5 sec

Running the same configurations in the software envelope, Figure 7.18 shows the per-

formance for those runs where the time until impact error is almost entirely eliminated.

The diamond marked line on the far right is the same hardware performance limit, dis-

played merely for a common relative measure to other figures. The six data sets create

two envelopes. The three with the original time until impact estimate are displayed as

“With Old tgo Estimate”, while the other three with the near perfect time until impact

estimate create the other envelope. Note, the “With Old tgo Estimate” is not the same

as the software envelope. It is just the performance envelope formed by the three config-

urations tested. As the graph shows, nearly eliminating the tgoest error has a significant

effect on performance. However, this method of reducing the impact error is obviously

not implementable in a real guidance system.

For this to be a viable improvement, a change in the guidance system must incorpo-

rate post-launch information to maximize reductions in the impact error for the greatest

number of scenarios and to detrimentally effect performance as infrequently as possible.

101

Figure 7.16: Corrected Aiming Height vs tgo, tgoest for OTS gain 1.8 and Rocket Ign of 31.25 sec

Figure 7.17: Corrected Aiming Height vs tgo, tgoest for OTS gain 1.4 and Rocket Ign of 34.5 sec

102

Figure 7.18: Change in Performance with Negligible tgoest
Error

As stated back in Chapter 6, the data indicates a correlation between the amount and

direction of impact error and the rocket ignition time. The data also demonstrates that

the estimate time until impact converges to the truth so any added term to the estimate

would have to decay as the munition approaches the target. The first attempt calculates

a time to impact correction term until the estimate is less than 10 s. As defined, the

error is positive when the estimated time until impact is greater than the actual. So once

calculated, the correction term is subtracted from the current time until impact estimate.

Figure 7.19 shows the mean error between the actual and estimated impact time for the

500 Monte Carlo scenarios, where:

tgoε = tgoest − tgoact (7.2)

The attempt fits a third-order polynomial regression to each of the error curves in

Figure 7.19. The rocket ignition time for each case is pulled out and the resulting co-

efficients averaged for all three runs. This is merely one of several possible adjustments

to the estimate time until impact calculation, chosen for ease of implementation not

expected performance improvement [45]. As the simulation runs, the guidance system

103

Figure 7.19: Time Until Impact Error vs Time Until Impact Estimate Error

takes in the INS detected RIT. This is the actual time of rocket ignition that varies from

the specified time by a seed determined error for every scenario. The guidance then uses

the RIT to determine the coefficients for the polynomial. Combined with the current

time until impact estimate, these coefficients determine the time until impact correction.

Figure 7.20 shows the correction factor for several rocket ignition times. With this adjust-

ment in place, Figure 7.21 shows the same three configurations alongside their previous

performance.

The results are mixed. For the run with an OTS gain of 1.4 and a RIT of 34.5 s, the

correction term improves the performance along the entire metric except for the top 5%

probability of kill. The new performance even outperforms the run with nearly zero time

to impact error, possibly a coincidental benefit of too much correction in this guidance,

rocket setup. However, this run is not defining any point of the performance envelope.

Improving its performance is of no value.

The middle run, an OTS gain of 1.8 and RIT of 31.25 s, demonstrates a reduction in

performance along most of the metric. The only area of increased performance occurs

in the low minimum terminal angle, high probability of kill area. These results extend

104

Figure 7.20: tgoest Correction Factor for Various Rocket Ignition Times

Figure 7.21: Probability of Kill vs. Min Terminal Angle for tgoest Correction Error

105

the top 1% probability of kill performance envelope a few more degrees. This is a small

improvement but a positive change to the envelope.

The final run, 2.0 OTS gain and 30.5 s RIT, shows the most significant benefits from

the time to impact correction term. Performance is significantly improved in the high

probability of kill, lower minimum terminal angle region. However, below around 65%

probability of kill, the time until impact correction negatively affects the run’s perfor-

mance.

106

Chapter 8

Conclusions

Overall, Dynamic programming demonstrated the most realizable, performance im-

provement for the entire metric. Even with only two runs, its envelope outperformed the

optimal performance of the industry standard guidance algorithms except at the lowest

probability of kill configurations.

Upon investigation, the simulation found the rocket ignition time (RIT) to be an ex-

tremely sensitive factor. While properly adjusting it greatly increased performance, the

more likely improper adjustment doomed a firing to failure from the beginning. In the

current architecture, as established in this thesis, intelligent changes to the RIT are very

difficult for even the most ideal short range scenarios.

Simulation runs demonstrated that reducing the time to impact error significantly

improved performance, but the method for reducing that error investigated in this thesis

was cumbersome and ineffective. Results indicated that the utilized methodology im-

proved with more simulation runs.

The simulation demonstrated significant performance improvement by eliminating cer-

tain key errors with strong correlation factors to the performance parameters.

The control policy generated with a limited number of Monte Carlo scenarios per-

formed exceptionally well when tested on the entire seed. Varying the number of Monte

Carlo scenarios significantly affected the percentage of unique minimum cost, state de-

pendent gains but not the performance. While demanding a large amount of time to

generate the control table, dynamic programming only does this once. After determining

the control policy, dynamic programming becomes a very low computationally demanding

107

guidance addition, requiring only a table lookup. To save more CPU time, the frequency

of the table lookup can be set much lower than that of the rest of the guidance system

because of the speed of this munition’s dynamics relative to the software. Additionally,

the current version of dynamic programming is merely at a utility level, and, with refine-

ment, reducing the computational time by several orders of magnitude is easily possible.

These savings could reduce the current run time of between 20 hours and 4 days, de-

pending on the number of Monte Carlo scenarios, or increase the resolution of the state

gridding or guidance gain options. Finally, dynamic programming offers a solution for

the entire munition’s range of operation. While this work focused on the short range

scenario, dynamic programming could generate a control policy for the entire state space

defined from the short to the long range scenario.

Based on the gathered data, the best method of improving performance for this sys-

tem is a conglomeration of the tested methods. Ideally, dynamic programming is run,

coded either independently of RIT or run with several RITs. If coded as another state

variable, the post-launch processing produces a control policy where guidance looks up

the INS detected RIT along with the state information to determine the guidance gain.

If several runs with different hard coded RITs are stored, the system can linearly inter-

polate between the control policies of nearest state combination and rocket ignition time.

Additionally, the other post-launch methods could use the state and RIT information

dynamic programming requires to further increase performance.

In the end, this work achieved, to different extents, both the theoretical and practical

objectives. Different attempts demonstrated varying amounts of potential performance

improvement. However, the unquestionable result is that better utilizing pre- and/or

post-launch data improved the munition’s performance. By pushing the software enve-

lope closer to the hardware envelope, software modifications help the munition perform

closer to its potential. For the user, these changes result in practical benefits. After

implementation, the munition is able to simultaneously hit the target with greater ac-

curacy and a higher terminal angle, reducing cost and increasing the munition’s mission

envelope. To compare, for a required minimum terminal angle of 55 deg, the user’s prob-

ability of kill improves by 14.31%, a 19.03% increase, when using dynamic programming.

Conversely, for a required probability of kill of 90%, dynamic programming improves the

achievable minimum terminal angle by 3.34 deg, a 6.48% increase. While the particular

performance improvement for a single run differs according to that run’s constraints, in

the end, the user has a better, more capable munition for all missions.

108

Chapter 9

Future Work

Restructuring the munition’s architecture to allow earlier GPS acquisition would sig-

nificantly help any possibility of properly adjusting the RIT. With enough reliable state

information available prior to ignition, the munition would have a reasonable chance to

intelligently change its RIT and greatly improve performance.

Despite concerns expressed for the current method of correcting the tgoest error, the

possible performance improvement, see Figure 7.18, and availability of post-launch infor-

mation strongly suggest the benefits and possibility of generating a better way to reduce

the error. More work is required to realize this great potential.

This thesis leaves the task of finding a practical method to reduce the errors strongly

correlated to performance and realize the potential demonstrated to another, see Figures

7.13 and 7.14. Even if practical solutions do not eliminate errors entirely, it is completely

within the current architecture and work load of the system to process post-launch in-

formation to reduce the most damaging errors and significantly improve performance.

With more time, post-launch information could be used for multiple means not only

to reduce keys errors but estimate important, unaccounted forces-such as drag or lift

correction.

The work in dynamic programming has created a large number of questions. The dif-

ference between 5 and 25 scenarios was examined, however the conclusions drawn should

be extended to the limits on either side. A careful examination of why the performance

of the control policy does not change, yet parts of the control policy do change would

answer many questions. Also dealing with the number of Monte Carlo scenarios, the

109

cost for the terminal states is determined from the 50% median of all the Monte Carlo

scenarios run. The consequences of using the median with such a small sample size versus

other statistics, such as mean, and the ability of the median to portray the most criti-

cal attributes of the data remains inadequately examined. The method of discretization

needs reworked to create a state matrix with fewer doomed state combinations.

A great deal of work is necessary for the described amalgamation to work. Imple-

mentable solutions must be designed and tested to intelligently change the RIT, reduce

the time to impact error, and decrease the most significant errors. Before using it, dy-

namic programming needs to be computationally streamlined and translated to a faster

language. It needs to be modified to either add an addition state variable or allow guid-

ance to interpolate between control policies generated with different RITs. Then, these

attempts need to be tested simultaneously. It may turn out that some of the improve-

ments are not concurrently implementable. However, based on the currently collected

data, the work seems worthwhile as it would drastically improve performance.

110

Appendix A: Abbreviations

Table 9.1: Abbreviation List

A Aerodynamic Frame
ATK Alliant Techsystems

BTERM Ballistic Trajectory Extended Range Munition

CEP Circular Error Probable
CPU Central Processing Unit
COTS Commercial-Off-the-Shelf

deg Degrees
DOF Degree of Freedom
DP Dynamic Programming

E Earth-Centered, Earth-Fixed
ERGM Extended Range Guided Munition

ft Feet

g Factors of Average Earth Gravity

in Inches
INS Inertial Navigation System

K Kelvin
kg Kilograms

lb Pounds
LCEF Launch-Centered, Earth-Fixed
LOS Line-Of-Sight

m Meters

NED North-East-Down

OTS Offset-Target-Scale

PGG Predictive Geometric Guidance
PRIT Predictive Rocket Ignition Time

ProNav Proportional Navigation
ProNav GB Proportional Navigation with Gravity Bias

rad Radians
RIT Rocket Ignition Time

s Seconds
SE Software Envelope

tgoest TimetoGo Estimate and Time Until Impact
TLAM Tomahawk Land Attack Missile
TOF time-of-flight

yr Years

111

[This Page Intentionally Left Blank]

112

Appendix B: Coordinate Frames

Table 9.2: Earth-Centered, Earth-Fixed (E) Coordinate Frame

Origin Center of Earth
Fundamental Plane Earth’s mean equator
1st Axis & Definition I—Direction of Equator/Prime Meridian intersection
2nd Axis & Definition K—Direction of mean rotational axis (North is +)
3rd Axis & Definition J—Completes right-hand system

Figure 9.1: Earth-Centered, Earth-Fixed (E) Coordinate Frame

This section details the coordinate systems used in thesis ad nauseam for the sake

113

of avoiding confusion. Table 9.2 describes and Figure 9.1 illustrates the Earth-Centered,

Earth-Fixed frame. Occasionally, this work references LCEF, Launch-Centered, Earth-

Fixed, or TCEF, Target-Centered, Earth-Fixed. These frames are exactly the same as

Earth-Centered, Earth-Fixed except they are centered at the launch point or target, re-

spectively. In this thesis, the Earth is approximated as a sphere and so the conversion

magnitude is always one earth radius, see Nomenclature for details, distributed among

the axes as a function of launch point latitude and longitude.

Looking at the intersection of the Equator and the Prime Meridian, there is a red box

that shows the area Figure 9.2 has zoomed into. Also note the change in the cardinal

directions.

Table 9.3: North-East-Down (N) Coordinate Frame

Origin Munition center of mass
Fundamental Plane Plane created by 1st and 3rd axis
1st Axis & Definition N—Points North
2nd Axis & Definition E—Points East
3rd Axis & Definition D—Completes right-hand system

Table 9.4: Aerodynamic Coordinate Frame (A)

Origin Munition center of mass
Fundamental Plane Plane created by 1st and 3rd axis
1st Axis & Definition x—Along munition’s longitudinal axis
2nd Axis & Definition y—Out right “wing”, 90◦ to x-axis
3rd Axis & Definition z—Completes right-hand system

Tables 9.3 and 9.4 describe the other coordinate frames. These frames move much

more both relative to each other and the other systems. Figure 9.2 shows their relative

orientation at one point in the trajectory. At other points in the flight, the relationship

would be drastically different. As a side note, the size and shape of the trajectory relative

to the Earth is approximately correct for a short-range firing with a gun elevation of 60◦

and rocket ignition at 33 seconds. The total downrange travel is around 28 kilometers,

while the maximum altitude is just under nine kilometers.

114

Figure 9.2: North-East-Down (N) and Aerodynamic (A) Coordinate Frames

115

[This Page Intentionally Left Blank]

116

Bibliography

[1] Ergm: Extended range guidance munition, 2006-2007.

<http://www.raytheon.com/products/ergm/>.

[2] F. P. Adler. Missile guidance by three-dimensional proportional navigation. In

Journal of Applied Physics, volume 27, pages 500–7, 1956.

[3] ATK. Ballistic Trajectory Extended Range Munition (BTERM).

<http://www.atk.com/customer solutions missionsystems/cs ms w gp bterm.asp>.

[4] S. N. Balakrishnan and Jie Shen. Hamiltonian based adaptive critics for missile

guidance. In Guidance, Navigation and Control Conference, San Diego, CA, Jul

29-31, 1996. AIAA-1996-3836.

[5] K. Becker. Closed-form solution of pure proportional navigation. In IEEE Transac-

tions on Aerospace and Electronic System, volume 26, pages 526–32, 1990.

[6] Richard Bellman. Dynamic Programming. Dover Publications, dover edition of 1957

original edition, 2003.

[7] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, 1995.

[8] John T. Betts. Survey of numerical methods for trajectory optimization. In Journal

of Guidance, Control, and Dynamics, volume 21, pages 193–207, 1998. 0731-5090.

[9] B. Bowring. Transformation from spatial to geographical coordinates. In Survey

Review, volume XXIII, pages 323–327, 1976.

[10] Ying-Chwan Chiou and Chen-Yuan Kuo. Qualitative analysis of missile guidance

problem. In AIAA Guidance, Navigation, and Control Conference, New Orleans,

LA, Aug 11-13, 1997,. AIAA-1997-3689. Collection of Technical Papers. Pt. 2 A97-

37001, pp 10-63.

[11] Ying-Chwan Chiou and Chen-Yuan Kuo. Geometric approach to three-dimensional

missile guidance problem. In Journal of Guidance, Control, and Dynamics, vol-

ume 21, pages 335–341, 1998. 0731-5090.

117

[12] R. G. Cottrel. Optimal intercept guidance for short-range tactical missiles. In AIAA

Journal, volume 9, pages 1414–5, 1971.

[13] Jeffrey S. Dalton and S. N. Balakrishnan. Neural on-line learning in missile guidance.

AIAA-1993-3872.

[14] Department of the Navy: Research, Development and Acqui-

sition. ERGM Extended Range Guided Munition, May 2007.

<http://acquisition.navy.mil/programs/weapons/ergm>.

[15] Department of the Navy: Research, Development and Acquisition. Tactical Toma-

hawk, May 2007. <http://acquisition.navy.mil/content/view/full/4709>.

[16] Clark R. Dohrmann, G. R. Eisler, and Rush D. Robinett. Dynamic programming

approach for burnout-to-apogee guidance of precision munitions. In Journal of Guid-

ance, Control, and Dynamics, volume 19, pages 340–346, 1996. 0731-5090.

[17] Global Security Online. Ballistic Trajectory Extended Range Muni-

tion (BTERM) Autonomous Naval Support Rounds (ANSR), Jan 2006.

<http://www.globalsecurity.org/military/systems/munitions/bterm.htm>.

[18] Global Security Online. Extended Range Munition (ERM), Feb 2006.

<http://www.globalsecurity.org/military/systems/munitions/erm.htm>.

[19] C. Gracey, E. M. Cliff, F. H. Lutze, and H. J. Kelley. Fixed-trim re-entry guidance

analysis. In AIAA Guidance and Control Conference, Alburquerque, New Mexico,

volume 5, Aug 1981.

[20] M. Guelman. A qualitative study of proportional navigation. In IEEE Transactions

on Aerospace and Electronic Systems, volume 7, pages 637–43, 1971.

[21] P. Gurfil. Robust guidance for electro-optical missiles. In IEEE Transactions on

Aerospace and Electronis Systems, volume 39, pages 450–461, 2003.

[22] P. Gurfil. Zero-miss distance guidance law based on line-of-sight rate measurement

only. In Control Engineering Practice, volume 11, pages 819–832, 2003.

[23] P. Gurfil and J. Kasdin. Improving missile guidance performance by in-flight two-

step nonlinear estimation of radome aberration. In AIAA Guidance, Navigation, and

Control Conference and Exhibit, Austin, Texas, Aug 11-14, 2003. AIAA-2003-5723.

[24] S. Gutman. On optimal guidance for homing missiles. In Journal of Guidance,

Control, and Dynamics, volume 2, pages 296–300, 1979.

[25] Jonathan How. Principles of optimal control. Lecture Notes for 16.323, Spring 2006.

MIT OpenCourseWare, <http://ocw.mit.edu>.

118

[26] S. H. Jalali-Naini. Analytical study of a modified los guidance. In AIAA Guidance,

Navigation, and Control Conference and Exhibit, Montreal, Canada, Aug 6-9, 2001.

AIAA-2001-4045.

[27] Donald E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,

1998.

[28] Carlo Kopp. Cruise missiles. Australian Aviation, Sep 1985.

<http://www.ausairpower.net/TE-Cruise-Missiles-1985.html>.

[29] R. R. Kumar, H. Seywald, and E. M. Cliff. Near-optimal three-dimensional air-to-air

missile guidance against maneuvering target. In Journal of Guidance, Control, and

Dynamics, volume 18, pages 457–464, 1995.

[30] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[31] R. V. Lawrence. Advanced missile guidance. AIAA-1991-2726.

[32] N. Lechevin and C.A. Rabbath. Lyapunov-based nonlinear missile guidance. In

Journal of Guidance, Control, and Dynamics, volume 27, pages 1096–1102, 2004.

0731-5090.

[33] S. Levinson, H. Weiss, and J. Ben-Asher. Trajectory shaping and terminal guidance

using linear quadratic differential games. In AIAA Guidance, Navigation, and Con-

trol Conference and Exhibit, Monterey, California, Aug 5-8, 2002. AIAA-2002-4839.

[34] C. Li and W. Jing. New results on three-dimensional differential geometric guidance

and control problem. In AIAA Guidance, Navigation, and Control Conference and

Exhibit, Keystone, Colorado, Aug 21-24, 2006. AIAA-2006-6086.

[35] C. F. Lin. Classical vs. modern control system design for terminal guidance of

bank-to-turn intercept missiles. In Proceedings of the AIAA Guidance and Control

Conference, AIAA, New York, pages 283–301, 1983. AIAA Paper 83-2203.

[36] Ching-Fang Lin, John E. Bibel, Ernest Ohlmeyer, and Steve Malyevac. Optimal

design of integrated missile guidance and control. In AIAA and SAE, 1998 World

Aviation Conference, Anaheim, CA, Sep 28-30, 1998. AIAA-1998-5519.

[37] Fred Lisy and Troy Prince. End game enhancement using reflexive decision making.

In 3rd Annual Missiles and Rockets Symposium, Apr 19, 2002.

[38] Jongki Moon, Kiseok Kim, and Youdan Kim. Design of missile guidance law via vari-

able structure control. In Journal of Guidance, Control, and Dynamics, volume 24,

pages 659–664, 2001. 0731-5090.

[39] Y. Ochi. Missile guidance law design based on two-degree-of-freedom bearing control.

In AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas,

Aug 11-14 2003. AIAA-2003-5578.

119

[40] Craig A. Phillips and James M. Chisholm. Missile guidance and control challenges for

short range anti-air warfare. In AIAA Guidance, Navigation and Control Conference,

Baltimore, MD, Aug 7-10, 1995,. AIAA-1995-3282. Technical Papers. Pt. 2 A95-

39609 10-63, Washington, DC, American Institute of Aeronautics and Astronautics,

1995, pp 1002-1019.

[41] William C. Pittman and Rex B. Powell. Trends in tactical missile guidance and con-

trol strategy and program formulation. In AIAA Defense and Space Programs Con-

ference and Exhibit - Critical Defense and Space Programs for the Future, Huntsville,

AL, Sep 23-25, 1997,. AIAA-1997-3952. A Bound Collection of Papers A97-41701,

pp 11-12.

[42] S. Rogers. Missile guidance comparison. In AIAA Guidance, Navigation, and Control

Conference and Exhibit, Providence, Rhode Island, Aug 16-19, 2004. AIAA-2004-

4882.

[43] Ilan Rusnak. Multiple model-based terminal guidance law. In Journal of Guidance,

Control, and Dynamics, volume 23, pages 742–746, 2000. 0731-5090.

[44] I[lan] Rusnak and L. Meir. Optimal guidance for high-order and acceleration con-

strained missile. In Journal of Guidance, Control, and Dynamics, volume 14, pages

589–596, 1991.

[45] Jason L. Speyer, Kevin D. Kim, and Minjea Tahk. A passive homing missile guidance

law based on new target maneuver models. In Guidance, Navigation and Control

Conference, Portland, OR, Aug 20-22, 1990. AIAA-1990-3378.

[46] Robert F. Stengel. Optimal Control and Estimation. Dover Publications, 1994.

[47] T. L. Vincent and R. Morgan. Guidance against maneuvering targets using lyapunov

optimizing feedback control. In Proceddings of the American Control Conference,

pages 215–220, New York, 2002. IEEE Press.

[48] P. Weinacht, G. Cooper, and J. Newill. Prediction of direct fire munition trajectories

using an analytical approach. In AIAA Atmospheric Flight Mechanics Conference

and Exhibit, San Francisco, California, Aug 15-18 2005. AIAA-2005-5816.

[49] B. White, R. Zbikowski, and A. Tsourdos. Direct intercept guidance using differential

geometry concepts. In AIAA Guidance, Navigation, and Control Conference and

Exhibit, San Franciso California, Aug 15-18, 2005. AIAA-2005-5969.

[50] C. D. Yang and F. B. Yeh. Optial proportional navigation. In Journal of Guidance,

Control, and Dynamics, volume 11, pages 375–7, 1988.

[51] R. T. Yanushevsky and W. J. Boord. A new approach to guidance law design. In

AIAA Paper, Aug 2003. 2003-5577.

120

[52] S. H. Yoo and T. E. Bullock. Missile guidance based on weight adjusted singular

perturbation. In AIAA Guidance, Navigation and Control Conference, Boston, MA,

Aug 14-16, 1989,. AIAA-1989-3482. Technical Papers. Part 1 A89-52526 23-08.

Washington, DC, American Institute of Aeronautics and Astronautics, 1989, pp

496-503.

[53] P. J. Yuan and J. S. Chern. Ideal proportional navigation. In Journal of Guidance,

Control, and Dynamics, volume 15, pages 268–271, 1992.

[54] P. Zarchan. Tactical and strategic missile guidance. In AIAA Progress in Astronau-

tics and Aeronautics, Reston, VA, volume 199, pages 11–29, 2002,.

121

	List of Figures
	Lift of Tables
	Nomenclature
	Introduction
	Problem Statement
	Objectives
	Overview

	Physical System Background
	Simulation
	Initializations
	Dynamics
	Save States
	Flight Utilities
	Transformation Direction Cosine Matrices (DCMs)
	Aerodynamics, Guidance, Gravity, and Propulsion
	Aerodynamics
	Guidance
	Propulsion

	Industry Standard Guidance Systems
	Background
	Proportional Navigation
	Proportional Navigational with Gravity Bias
	Offset Target Scale

	Establishing The Baseline Performance
	Software Performance Envelope
	Hardware Performance Envelope

	Industry Standard Guidance Algorithm Characteristics and Issues
	Correlation
	Time-to-Go Estimate
	Dynamic Programming and Varying Guidance Gain
	Background
	Cost Function Determination
	Discretization Grid
	Implementing Dynamic Programming

	New Guidance Attempts and Results
	Dynamic Programming
	Predictive Rocket Ignition Time Analysis
	Incorporating Post-Launch Information for Strongly Correlated Errors
	Reducing tgoest Error

	Conclusions
	Future Work
	Appendix A: Abbreviations
	Appendix B: Coordinate Frames

